 Московский Государственный Университет им. М.В. Ломоносова

Факультет вычислительной математики и кибернетики

 ENGLISH READER
 IN COMPUTER SCIENCE
 Учебно-методическое пособие

 для первого курса
 Под редакцией

 Т.А. Волошиной и Л.Б. Саратовской
Авторы-составители Бим М.М., Волошина Т.А., Горшечникова Е.А., Коновалова О.Н., Опарина О.И.

Под редакцией: Волошиной Т.А. и Саратовской Л. Б.

Рецензенты: к.к.н. Беликова Е.К., к.ф.н. Преснухина И.А.

Данное учебно-методическое пособие предназначено для студентов 1 курса факультета ВМК МГУ. Пособие состоит из 12 разделов. Каждый раздел содержит оригинальные тексты из английской и американской литературы, а также задания к ним.

Contents:
	Предисловие
	4

	UNIT 1. History of Calculating Devices
	5

	UNIT 2. Computer Generations
	12

	UNIT 3. Algorithms
	17

	UNIT 4. Data Structures
	23

	UNIT 5. Central Processing Unit
	31

	UNIT 6. Input Devices
	36

	UNIT 7. Output Devices
	41

	UNIT 8. Disks and Drives
	46

	UNIT 9. Operating System
	52

	UNIT 10. High-level languages
	64

	UNIT 11. Assembler
	72

	UNIT I2. Future Computers
	80

	Appendix. The Final Tests.
	86

	TEST 1
	86

	TEST 2
	88

	TEST 3
	90

	TEST 4
	91

	TEST 5
	93

	TEST 6
	94

	Bibliography
	97

 Предисловие
 Данное учебно-методическое пособие предназначено для студентов первого курса ВМК МГУ. Цель учебного пособия – научить первокурсников работать с литературой по специальности и развить у них навыки чтения, понимания, а также письменного и устного владения английским языком как средством общения в сфере будущей профессиональной деятельности. Предлагаемое учебно-методическое пособие разработано на основе оригинальных материалов, взятых из англо-американских научных источников, и состоит из 12 разделов, структура которых однотипна. Каждый раздел включает:

- тексты с предшествующим им списком активной лексики;

- вопросы к текстам;
- задания на распределение материала в логическом порядке;

- короткие подытоживающие тексты на русском языке для перевода с русского на английский язык;
- темы для устного обсуждения пройденных материалов.

 Авторы также предлагают преподавателям и студентам обращаться к дополнительным упражнениям из учебно-методического пособия для первого курса “Practice Book”(2002), помогающим тренировке активного словаря и терминологии текстов, а также активизации речевых моделей и формул. В данное издание не включены упражнения по грамматике, так как кафедрой английского языка создано специальное грамматическое пособие для студентов ВМК “ English Grammar for Computer Science Students”.
 Новым во втором издании учебно-методического пособия “English Reader in Computer Science” являются не только свежие тексты, взятые из ряда источников последних лет, но

и тестовое приложение “Revision Tests”, позволяющее проверить степень усвоения студентами пройденного материала

 От редакторов.
 UNIT 1

History of Calculating Devices

Key vocabulary:

1. Compute

v.
– вычислять, считать

2. Device

n.
– устройство, прибор,
 механизм
3. Consist (of)

v.
– состоять (из)
4. Sophisticated

adj.
– сложный, усложненный
5. Add

v.
– складывать, прибавлять
6. Subtract

v.
– вычитать, отнимать
7. Multiply

v.
– умножать
8. Divide

v.
– делить
9. Reliable

adj.
– надежный
10. Manufacture

v.
– производить, выпускать
11. Precision

n.
– точность
12. Processing

n.
– обработка
13. Contain

v.
– содержать, вмещать
14. Obtain

v.
– получать
15. Carry out

v.
– выполнять
16. Value

n.
– значение, величина
17. Digital

adj.
– цифровой
18. Perform

v.
– выполнять, производить
 (действие)
19. Function

v.
– функционировать,
 работать
20. Switch

n.
– переключатель
21. Circuit

n.
– схема, цепь, контур
22. Solve

v.
– решать
23. Store

v.
– хранить, запоминать
24. Stored program

– загруженная программа,

 хранимая программа
People have been “computing” throughout history probably since they first learned how to count with pebbles. The abacus, the counting frame was the most widely used device for doing arithmetic in ancient times. Early versions of the abacus consisted of a board with grooves in which pebbles could slide. The Latin word for pebble is calculus, from which we get the words abacus and calculate.
Mechanical Calculators
 In the seventeenth century calculators, more sophisticated than the abacus, began to appear. Blaise Pascal (French mathematician and philosopher) designed and built the first adding machine which could only add and subtract. In 1671 Wilhelm von Leibniz (German mathematician, philosopher and diplomat) built the stepped reckoner. This calculator could multiply and divide by using repeated additions and subtractions. The calculators of Pascal and Leibniz were unreliable since the mechanical technology of the time was not capable of manufacturing the parts with sufficient precision.
 Most information-processing machines were designed to do arithmetic. An outstanding exception, however, was Jacquard’s automated loom invented in 1800. A Jacquard loom weaves cloth containing a decorative pattern. The woven pattern is controlled by punched cards. Changing the punched card changes the pattern the loom weaves. Jacquard looms came into widespread use in the early nineteenth century.
Charles Babbage
 Charles Babbage, professor of mathematics at Cambridge University, became annoyed by the mathematical errors he was constantly finding in printed navigational and astronomical tables. He set out to build a machine that not only would calculate the entries in the tables but would print them automatically as well. He called this machine the Difference Engine. In 1823 Babbage obtained a government grant to build it. He ran into difficulties, however, and eventually abandoned the project. In 1854 a Swedish printer built a working Difference Engine based on Babbage’s ideas.

 One of Babbage’s reasons for abandoning the Difference Engine was that he had been struck by a much better idea. Inspired by Jacquard’s punched-card-controlled loom, Babbage wanted to build a punched-card-controlled calculator. Babbage called his proposed automatic calculator the Analytical Engine.

The Difference Engine could only compute tables. But the Analytical Engine could carry out any calculation, just as Jacquard’s loom could weave any pattern. All one had to do was to punch the cards with the instructions for the desired calculation. If the Analytical Engine had been completed, it would have been a nineteenth-century computer.
Lady Lovelace
 Even thought the analytical Engine was never completed, a demonstration program for it was written. The author of that program has the honor of being the world’s first computer programmer. Her name was Augusta Ada Byron, later Countess of Lovelace, the only legitimate daughter of the poet, Lord Byron.

 To demonstrate how the Analytical Engine would work, Lady Lovelace included in her notes a program for calculating a certain series of numbers that is of interest to mathematicians. This was the world’s first computer program.
George Boole
 George Boole (1815 - 1864) introduced a theory of logic now known as Boolean algebra. Boole reduced logic to two-valued binary notation. In binary notation only the values 1 and 0 are used to express numbers. Binary notation turned out to be virtually made to order for electronic components, which can be either on (the equivalent of 1) or off (the equivalent of 0). All these inventions paved the way for the birth of the electronic digital computer.
The Mark Ι
 In 1937 Howard H. Aiken started developing a computer at Harvard University. Aiken wanted to combine a punched-card input method with contemporary electrical and mechanical technology. In 1944 Aiken and four IBM engineers completed the Mark Ι.

 The Mark Ι was 50 feet long and 8 feet high. Its thousands of moving parts were controlled by electric current. It took Mark Ι approximately 4 ½ seconds to multiply two 23-digit numbers. The Mark Ι fed raw data on punched paper tape into a “mill”, where the calculations, supervised by a set of logical instructions, were performed.

The Atanasoff-Berry Computer
 Dr. John V. Atanasoff, a physicist at Iowa State College, made an important contribution to the continuing development of computers. In 1939 Atanasoff, assisted by a graduate student named Clifford Berry, built the first electronic digital computer, called the ABC or Atanosoff-Berry Computer. Atanasoff’s machine was the first entirely electronic computer, using vacuum tubes rather than electromechanical relays. The vacuum tubes functioned as switches and were able to close circuits much more rapidly than electromechanical parts which meant that calculations could be done faster. Though this work did not become widely known, it did influence the thinking of John W. Mauchly, one of the designers of ENIAC.
ENIAC
 The Electronic Numerical Integrator and Computer (ENIAC) was developed by John W. Mauchly and John Presper Eckert, Jr., at the University of Pennsylvania. Mauchly and Eckert had already been discussing the feasibility of developing an electronic computer when the U.S. Army’s Ballistic Research laboratories came to them with the problem of computing new-trajectory tables for use in World War ΙΙ. The electronic computer project got under way in April 1943.

 In 1946, ENIAC was finished, too late to contribute to the war effort, but in plenty of time to set new records for calculating speed. The ENIAC could do an unprecedented 5000 additions per second. In half a minute it could solve a problem that usually took the desktop adding machines of that day 20 hours. As you can see, the greatest asset of modern computers – their speed – was first experienced with ENIAC. The new computer had its limits, however. It contained more than 18,000 vacuum tubes; it needed a huge amount of electric power to run. It could store only 20 numbers of 10 digits each. Its operations were controlled by programs that required manual rewiring. In fact, a program change meant rewiring some 40 interconnected control panels, which took days.

 ENIAC’s calculating speed was offset to some extent when the time lost in rewiring the machine was taken into account.
EDVAC
 The Electronic Discrete Variable Computer was constructed at about the same time as ENIAC. But EDVAC, influenced by the ideas of the brilliant Hungarian-American mathematician John von Neumann, was by far more advanced than ENIAC. First, EDVAC used binary notation to represent numbers inside the machine. Second, EDVAC’s program was stored in the machine’s memory, just like data. Since the programs were stored the same way the data were one program could manipulate another program as if it were data. A stored-program computer is usually called a von Neumann machine in honor of the originator of the stored-program concept.

Norbert Wiener (1894-1964)
 It is necessary to mention also this American pure and applied mathematician, whose work on automatic aiming and firing of anti-aircraft guns during World War II led to communication theory and eventually to formulation of cybernetics. After the war, Wiener’s prominence helped Massachusetts Institute to recruit a research tem in cognitive science, made up of researchers in neuropsychology and the mathematics and biophysics of the nervous system. These men went to make pioneering contribution to computer science and artificial intelligence. Wiener went on to break new ground in cybernetics, robotics, computer control, and automation. He was a strong advocate of automation to improve the standard of living, and to overcome economic underdevelopment.
Ex. 1. Answer the following questions:

1. What instrument was invented for counting before a mechanical way for multiplying and dividing appeared?

2. Why were the calculators of Pascal and Leibniz unreliable?

3. When were punched cards first used?

4. Why was Babbage’s Analytical Engine a kind of general-purpose computer?

5. Why is Lady Lovelace considered to be the first programmer?

6. What invention paved the way for the birth of the electronic digital computer?

7. What innovation was used in the Mark Ι?

8. What did ENIAC use for computing and memory?
9. What limits did ENIAC have?

10. How did ENIAC work?

11. Why was EDVAC more advanced than ENIAC?

Ex. 2. Give the main ideas of the text in logical order.

Ex. 3. Translate in writing:

От абака до ЭВМ.

 Очень давно, когда человечество было еще совсем молодым, люди использовали различные инструменты (орудия) для увеличения своих физических возможностей.

Когда человечество стало немного старше, у него появились другие проблемы. Стало необходимым накапливать, хранить, передавать и обрабатывать информацию. Это привело к возникновению счета и письменности. Древнейшим инструментом, который помогал человеку считать, была его рука. Две руки стали основой десятичной системы счисления.

 С развитием торговли человеку стали нужны инструменты, увеличивающие интеллектуальные, а не физические возможности. Такими инструментами были простейшие счеты: «суан-пан» в Китае, «сурабан» в Японии, «абак», который использовали в Древней Греции. В России появился счетный инструмент, которому дали название «русские счеты».

 С развитием науки и техники возникла необходимость выполнения большого количества вычислений за короткий срок времени. Так, ХХ век, открывший человечеству космос и ядерную энергию, подарил ему машину, которая могла считать автоматически (без участия человека) и с высокой скоростью (миллионы операций в секунду). Эту машину назвали ЭВМ (электронная вычислительная машина), или компьютер.
Ex. 4. Topics for discussion.
1. Major early developments in computing.
2. Prove that Babbage was a prolific inventor.

3. The emergence of the first electronic digital computer.

4. The stored-program concept developed by Neumann.

 UNIT 2

Computer Generations
Key vocabulary:

1. Generate

 v. – порождать,
 генерировать, производить
2. Amount

 n. – количество
3. Represent

 v. – представлять
4. Available

 adj. – доступный, имеющийся в
 наличии
5. Replace

 v.– заменять, замещать

6. Failure

 n.– отказ, сбой, выход из строя
7. Provide

 n.– обеспечивать, давать,
 предоставлять
8. Retrieve

 v.– отыскивать, извлекать

9. Incorporate
 v.– включать,
 объединять (ся), соединять (ся)
10. Time-sharing

 n.– разделение времени;
 режим разделения времени
11. Feature

 n.– черта, особенность,
 свойство, признак
12. Simultaneously

 adv.– одновременно, параллельно
13. Separate

 adj.
– отдельный, изолированный
14. Incompatible

 adj.
– несовместимый
15. Cope with

 v.
– справляться
16. Inference

 n.
– (лог.) вывод, заключение
17. Update
 v.
– обновлять, корректировать
18. Evolve

 v.
– развивать(ся)
19. Image processing

– обработка
 изображений, иконика
The First Generation of Computers

 The first generation of computers prevailed in the 1940s and in the early 1950s. They used vacuum tubes for calculation and control. Vacuum tubes were bulky, unreliable, energy consuming and generated large amounts of heat. As long as computers were tied down to vacuum tube technology, they could only be cumbersome and expensive. First generation computers used binary notation to represent numbers.

The Second Generation of Computers

 In the late 1950s the transistors became available. They replaced vacuum tubes. Transistors were ready to work quickly and far fewer failures. They provided much more power than vacuum tubes did, generated little heat and draw a very little amount of electricity.
 At about the same time the magnetic-core memory was introduced. This consisted of a latticework of wires on which were strung tiny rings, called cores. Electric current flowing in the wires stored information by magnetizing the cores. Information could be stored in core memory or retrieved from it in about a millionth of a second.

 Transistors and relatively low-cost magnetic core memory made it possible to build smaller, more powerful computers. At the same time faster, more efficient input devices (like card readers) and output devices (like printers) were developed.

The Third Generation of Computers
 The early 1960s saw the introduction of integrated circuits which incorporated hundreds of transistors on a single silicon chip. When the chip arrived, it reduced even further the size of computers while increasing their speed.
 Another development that changed the way people used computers was time-sharing, a feature of some IBM 360 models. Time-sharing made it possible for several people to use computer resources simultaneously. A time-sharing computer allows many users, each working at a separate input/output terminal, to use it at the same time.

 Because the design of third-generation computers was so different from that of second-generation computers, most of the second generation software was incompatible with the new machines. Much software had to be rewritten and many programmers had to be retrained.

The Forth Generation of Computers

 The next jump in computer technology was the introduction of large-scale integrated circuits. Whereas the older integrated circuits contained hundreds of transistors, the new ones contained thousands or ten thousands of transistors on a single silicon chip. It was a large-scale integrated circuit that made possible the microprocessor and microcomputer. They also made possible compact, inexpensive, high-speed, high-capacity integrated-circuit memory.

The Fifth Generation of Computers

 Fifth generation computers aim to be able to solve highly complex problems, ones which require reasoning, intelligence and expertise when solved by people. They are intended to be able to cope with large subsets of natural languages, and draw on very large knowledge bases. In spite of their complexity, fifth generation computers are being designed to be used by people who are not necessarily computer experts.

 In order to achieve these very ambitious aims, fifth generation computers will not have a single processor or a small number of tightly coupled processors as computers do today. They are being designed to contain a large number of processors, grouped into three major subsystems: a knowledge base system, an inference mechanism and an intelligent user interface.

The knowledge base system has a very large store of knowledge, with a set of processors which access and update the knowledge. It is likely that knowledge bases will evolve from current work in relational databases. Operations on knowledge bases require the manipulation of large numbers of individual elements: this manipulation will be done in parallel by the arrays of knowledge processing elements.

 The intelligent user interface is the point of contact between a fifth generation computer and its user. Many of these will be based on communication in a large subset of a natural language. Others will make extensive use of advanced graphics, including image processing. The intention is to build a user interface which is close to the natural way of thinking of the user, rather than close to the way of working of the computer, as in the case with contemporary user interfaces. The intelligent interface will contain its own set of processing elements – image processing systems may have an array of processors, one per pixel of the display.

Ex. 1. Answer the following questions:
1. What typical characteristics did the first generation computers have?

2. What were the drawbacks of vacuum tubes?

3. What innovation did the second generation of computers bring?

4. What are the advantages of transistors over vacuum tubes?

5. What electronic advancement moved computers into the third generation?

6. What does time-sharing mean?

7. What became possible with the advent of large-scale integrated circuits?

8. What is the aim of fifth generation computers?

9. What are the major subsystems within the processors?

10. In what way will the new computers deal with natural languages and knowledge bases?

Ex. 2. Give the main ideas of the text in logical order.

Ex. 3. Translate in writing:

Первая ЭВМ в Европе
 В 1947 году в Киеве небольшая группа ученых под руководством академика Сергея Алексеевича Лебедева начала работать над созданием первой в мире электронно-вычислительной машины.

 Невозможно представить себе трудности, с которыми столкнулись ученые в процессе работы. Все нужно было начинать с нуля: не было опыта подобных работ, негде было прочитать или узнать о них. Дело в том, что уже работавшая в то время в США вычислительная машина ЭНИАК применялась в военных целях и могла решать только одну задачу – задачу встречи летящего снаряда (ракеты) и движущегося корабля.

 ЭВМ, созданная академиком С. А. Лебедевым, была способна решать не только военные, но и мирные задачи и почти не отличались от современных ЭВМ. Эта была очень сложная машина. Подумать только! В этой ЭВМ работало около 6000 электронных ламп. Ее начали выпускать в 1951 году и назвали МЭСМ – малая элетронно-счетная машина.
Ex. 4. Topics for discussion.
1. The evolution of computers in terms of generations.

2. Describe the technological features of each computer generation.

3. What technological developments made microcomputers possible.
 UNIT 3

Algorithms
Key vocabulary
Eliminate

v.– устранять, исключать,

 уничтожать
Execute

v.– выполнять
Furthermore

 adv.– кроме того, более того
Concept

n.–понятие, идея, концепция
Appreciate

v.–ценить, оценивать
 (по достоинству)
Equation

n.– уравнение, равенство
Apply

v.– применять, употреблять
Employ

v.– использовать, применять
Procedure

n.– процедура
Property

n.– свойство
Notion

n.– понятие, представление,
 идея
Experience

n.– опыт
Solvability

n.– разрешимость
Decision-making

 – принятие решения
Rapid

 adj.– быстрый
Represent

v.– представлять
Representation

n.– представление,

 утверждение
Prove

v.– доказать, доказывать
Knowledge

n.– знание, познание,

 эрудиция
Rigorous

 adj.– строгий, точный
Hitherto

 adv.– до сих пор, до

 настоящего момента
 Twenty or more years ago the word “algorithm” was unknown to most educated people; indeed, it was scarcely necessary. The rapid rise of computer science, which has the study of algorithms as its focal point has changed all that; the word is now essential. There are some other words that almost, but not quite, capture the concept that is needed: procedure, recipe, process, routine, method, rigmarole. Like these things an algorithm is a set of rules or directions (instructions) for getting a specific output from a specific input. The distinguishing feature of an algorithm is that all vagueness must be eliminated; the rules must describe operations that are so simple and well-defined that they can be executed by a machine. Furthermore, an algorithm must always terminate after a finite number of steps.

 A computer programme is the statement of an algorithm in some well-defined language, although the algorithm itself is a mental concept that exists independently of any representation. Anyone who has prepared a computer programme will appreciate the fact that an algorithm must be very precisely defined, with attention to detail that is unusual in comparison with other things people do. Programmes for numerical problems were written as early as 1800 B.C. when Babylonian mathematicians gave rules for solving many types of equations. The rules were as step-by-step procedures applied systematically to particular numerical examples. The word “algorithm” itself originated in the Middle East, although at a much later time. Curiously enough it comes from the Latin version of the last name of the Persian scholar Abu Jafar Mohammed ibn Musa al-Khowaresmi (Algorithmi) whose textbook on arithmetic (с. 825 A.D.) employed for the first time Hindu positional decimal notation and gave birth to algebra as an independent branch of mathematics. It was translated into Latin in the 12th century and had a great influence for many centuries on the development of computing procedures. The name of the textbook’s author became associated with computations in general and used as a term “algorithm”.

 Originally algorithms were concerned solely with numerical calculations; Euclid’s algorithm for finding the greatest common divisor of two numbers is the best illustration. There are many properties of Euclid’s powerful algorithm which has become a basic tool in modern algebra and number theory. Nowadays the concept of an algorithm is one of the most fundamental notions not only in mathematics but in science and engineering. Experience with computers has shown that the data manipulated by programmers can represent virtually anything. In all branches of mathematics the task to prove the solvability or unsolvability of any problem requires a precise algorithm. In computer science the emphasis has now shifted to the study of various structures by which information can be represented and to the branching or decision-making aspects of algorithms, which allow them to fall on one or another sequence of operations depending on the state of affairs at the time. It is precisely these features of algorithms that sometimes make algorithmic models more suitable than traditional mathematical models for the representation and organization of knowledge.

 The concept of algorithms is perhaps almost as old as human civilization. The famous Euclid’s algorithm is more than 2000 years old. Angle trisection, solving diophantine equations are some well known examples of algorithmic questions. However until the 1930s the notion of algorithms was used informally (or rigorously but in a limited context).

 A machine model proposed by Turing in 1936 is of particular interest. It has come to be known as a Turing machine.

 Turing machines are basic abstract symbol-manipulating devices which, despite their simplicity, can be adapted to simulate the logic of any computer algorithm. Turing machines are not intended as a practical computing technology, but a thought experiment about the limits of mechanical computation. Thus, they were not actually constructed. Studying their abstract properties yields many insights into computer science and complexity theory.

 A Turing machine that is able to simulate any other Turing machine is called a Universal Turing Machine (UTM, or simply universal machine). A more mathematically-oriented definition with a similar “universal” nature was introduced by Alonzo Church, whose work on lambda calculus intertwined with Turing’s in a formal theory of computation, is known as the Church-Turing thesis. The thesis states that Turing machines indeed capture the informal notion of effective method in logic and mathematics, and provide a precise definition of an algorithm or ‘mechanical procedure’.

 This particular achievement has had numerous significant consequences. It is widely acknowledged that the development of a universal Turing machine was prophetic of the modern all-purpose digital computer and played a key role in the thinking of pioneers in the development of modern computers.

 A more interesting consequence was that it was now possible to show the nonexistence of algorithms, hitherto impossible due to their elusive nature. In addition, many apparently different definitions of an algorithm proposed by different researchers in different continents turned out to be equivalent. This equivalence led to the widely held hypothesis known as the Church-Turing thesis that mechanical solvability is the same as solvability on a Turing machine.

 Turing’s notion of mechanical computation was based on identifying the basic steps of such computations. He reasoned that an operation such as multiplication is not primitive because it can be divided into more basic steps such as digit-by-digit multiplication, shifting, and adding. Addition itself can be expressed in terms of more basic steps such as add the lowest digits, compute, carry, and move to the next digit, etc. Turing thus reasoned that the most basic features of mechanical computation are the abilities to read and write on a storage medium (which he chose to be a linear tape divided into cells or squares) and to make some simple logical decisions. He also restricted each type cell to hold only one among a finite number of symbols (which we call the tape alphabet).

 The decision step enables the computer to control the sequence of actions. To make things simple, Turing restricted the next action to be performed on a cell neighboring the one on which the current action occurred. He also introduced an instruction that told the computer to stop. To sum up, Turing proposed a model to characterize mechanical computation as being carried out as a sequence of instructions of the form: write a symbol (such as 0 or 1) on the tape cell, move to the next cell, observe the symbol currently scanned and choose the next step accordingly, or stop.

 These operations define a language we call the GOTO language. A program in this language is a sequence of numbered instructions (written one per line). To run a program written in this language, we should provide the input. We will assume that the input is a string of symbols from a finite input alphabet (which is a subset of the tape alphabet), which is stored on the tape before the computation begins.

 Although we do not want to place any bounds on it, allowing an infinite tape is not realistic. This problem is circumvented by allowing expandable memory. In the beginning, the tape containing the input defines its boundary. When the machine moves beyond the current boundary, a new memory cell will be attached with a special symbol B (blank) written on it. Finally, we define the result of computation as the contents of the tape when the computer reaches the STOP instruction.
Ex.1. Answer the following questions:

1. Why has the word “algorithm” become essential?

2. What are the distinguishing features of an algorithm?

3. What is the relationship between an algorithm and a computer program?

4. What were the first programs written for?

5. What is the origin of the word “algorithm”?

6. Why was the role of Al-Khowaresmi’s book so important?

7. How are algorithms used in mathematics?

8. How are algorithms used in Computer Science?

9. When did the concept of algorithm appear?

10. What role did Turing machine play in the history of science?

11. What was Turing’s notion of mechanical computation?

12. What is the GOTO language?

13. How does a program run in the GOTO language?

14. What does Church-Turing thesis state?

15. How are algorithms used in Computer Science?

Ex.2. Give the main ideas of the text in logical order.
Ex.3. Translate in writing:

Что такое алгоритм?

 Слово «алгоритм» происходит от имени персидского математика Хорезми (по-арабски Аль-Хорезми) который в IX в.н.э. разработал правила четырех арифметических действий над числами в десятичной системе исчисления. Совокупность этих правил в Европе стали называть «алгоризм». Позже это слово трансформировалось в «алгоритм» и стало обозначать отдельные правила определенного вида (и не только правила арифметических действий).

 В течение долгого времени его использовали не только математики для обозначения правил решения различных задач. В настоящее время словом «алгоритм» пользуются не только математики. Его стали использовать в самых различных сферах, и теперь алгоритм понимается как точно сформулированное правило, с помощью которого получают необходимый результат.

 Эффективный алгоритм – это алгоритм, допускающий эффективную вычислительную реализацию. Изучение возможности существования эффективных алгоритмов вычисления конкретных величин составляет основу теории алгоритмов. За исключением простейших случаев, доказать конкретность алгоритма или даже описать результат действия алгоритма довольно трудно. На практике приходится ограничиваться проверкой правильности алгоритма. Такая проверка позволяет удостовериться, что алгоритм обеспечивает выполнение требуемых вычислений. Она включает тестирование программы в различных условиях постановки задачи для приобретения уверенности в том, что алгоритм нормально работает во всех контрольных примерах.
Ex.4. Topics for discussion.

1. The history of an algorithm.

2. The use of algorithms in computer science.
3. Turing machine.
 UNIT 4

Data Structures
Key vocabulary:
1. Complicated

adj.– сложный
2. Item

n.– единица
3. Pointer

n.–указатель,
 описатель
4. String

n.– строка
5. Either … or …

​– либо … либо…;

 или … или …
6. Marker

n.– маркер, метка
7. Array

n.– массив
8. Dimension

n.– размерность
9. Two-dimensional

adj.– двумерный
10. Blank

n.– пробел, пропуск,
 пустое место
11. Stack

n.– стек, пакет
12. Queue

n.– очередь
13. Frequent

adj.– частый
14. Intermediate

adj.– промежуточный
15. Implement

v.– выполнять,
 осуществлять,

 обеспечивать выполнение
16. Implementation

n.–реализация,
 внедрение
17. Artificial intelligence
(AI)
– искусственный интеллект
18. Research

n.– исследование,
 изучение, изыскание
19. Tree

n.– дерево,
 древовидная структура
20. Hierarchy

n.– иерархия
21. Node

n.– вершина, узловая
 точка
22. Root

n.
– корень
23. Module

n.
– модуль, блок
24. Recursive

adj.
– рекурсивный
25. Integer

n.
– целое число
 Most of the information we encounter in everyday life is structured in some way. The commonest example is the words of our language, which are linked together in phrases, sentences and other more complex structures. The rules for constructing these structures are extremely complicated, yet we apply them by intuition.

 Other examples of structured information include dictionaries, telephone directories and encyclopedias. These are large stores of information which would be useless if the information were not strictly arranged according to a few simple rules. The structure of a collection of information makes it easy to locate individual items of information, and to insert new items, or delete items. The same reasoning applies to structured information stored in computers.

Pointers
 A pointer is a data item which indicates the location of another data item. It may be thought of as an arrow.

Pointers are used to build data structures. They provide the links which join elements of the structure. Of particular significance are pointers to the front and back of a data structure. Occasionally it is required that a pointer does not point to anything; in this situation, the pointer is said to have a null value.

Strings

 A string is a sequence of characters regarded as a single data item. Strings may be of fixed or variable length. The length of a string is indicated either by the number of characters in the string placed at the front of the string, or by a special character called an end-of-string marker at the end. The following example shows these two methods of representing the same string:

10 CAPITAL 194 CAPITAL 194#

 Operations on strings are of two types: operations which join two or more strings to produce a single string, and operations which divide a string to produce two or more sub-strings.

Arrays

 An array is a set of data items of identical types, stored together. The number of elements in the array is fixed when the array is created. Each element is accessed by an index, which indicates the position of the element in the array.

 For example, if the array BEATLES has elements as follows:

BEATLES

JOHN

PAUL

GEORGE

RINGO

 Then the element with index value 3, BEATLES (3) is the name GEORGE.

 Arrays can have more than one dimension. A two-dimensional array may be thought of as having rows and columns like in matrix. Two indices are required to locate an item in the array, corresponding to row and column indices in a matrix. For example, the state of a game of noughts and crosses may be represented by a two-dimensional array, GAME, with three rows and three columns:

GAME

OXO

XXO

OOX

 If the top left element is GAME(1,1), then the 0 in the third column of the second row is GAME(2,3) and the blank element is GAME(3,1).

Static and Dynamic Data Structures

 An array is a static data structure, that is to say, it stays the same size once it has been created. Data structures which change in size once they have been created are called dynamic data structures. A string can be a static or a dynamic data structure. They generally require pointers for their implementation.

Stacks

 A stack is a collection of data items which may only be accessed at one end, called the top of the stack.

 Only two operations may be carried out on a stack. Adding a new item, called pushing or stacking the item, involves placing it on top of the stack. Removing an item involves popping it from the stack.

If a number of items are pushed onto a stack, and then popped from the stack, the last item added will be the first one removed. For this reason a stack is called a last-in-first-out (LIFO) stack. Other names for a stack are push-down stack and push-down list.

 When a stack is stored in a computer memory, the elements do not move up and down as the stack is pushed and popped. Instead, the position of the top of the stack changes. A pointer called a stack pointer indicates the position of the top of the stack.

 Another pointer is used to indicate the base of the stack. This pointer, called the stack base, keeps the same value as long as the stack is in existence.

 The stack is one of the most important data structures in computing. Stacks are used in calculations, for translating from one computer language to another and for transferring control from one part of a program to another. Most modern processors include a stack pointer as an architectural feature and some regard their entire memory as a set of stacks.

 In spite of the American origins of many ideas associated with computers, that great British institution, the queue, has found its way into the theory of computing. Everyone knows how a queue works: newcomers join at the rear, service is provided at the front, and no pushing-in is allowed. Exactly the same rules apply to queues of data stored in a computer memory: data items are added at the back and removed from the front. A queue is a first-in-first-out (FIFO) data structure.

 Although queues are used slightly less frequently than stacks, they do have a variety of applications. These include queuing data items in transit between a processor and a peripheral device or intermediate points in a data communications network.

Lists
 A list is a set of data stored in some order. Data items may be inserted or deleted at any point in the list. In this respect, a list is less restrictive than a stack or queue. The simplest way of implementing a list makes use of a pointer from each item to the one following it in the list. There is also a pointer to the start of the list, while the last item in the list has a null pointer.

 A data structure of this type is also known as a linked list. A list element consists of a data item and its pointer. In many applications a list element contains a number of data items. Since elements can easily be added to the rear or removed from the front of the linked list, this structure may also be used to implement a queue. Inserting an element into a list is achieved by adjusting the pointers to include the new element.

 Data items in a list are in order, in the sense that one data item is behind another in the list. Lists are, however, frequently used in cases where the data items are in numerical or alphabetical order. Such lists are called ordered lists. Lists are very useful for storing ordered sets of data, if insertions and deletions of data items are frequent.

 Data items may themselves be entire lists. Lists of this nature are widely used in artificial intelligence research, and form the basis of the programming language Lisp.

 A tree is a structure implying a hierarchy, with each element of the tree being linked to elements below it.

 Each data item in a tree is at a node of the tree. The node at the top of the tree is called the root. Each node may be connected to one or more subtrees, which also have a tree structure. A node at the bottom of the tree, which has no subtrees, is called a terminal node, or a leaf.

 A number of operations may be carried out on trees. Two binary trees may be joined to an additional node, which becomes the root of a larger binary tree, with the original trees as subtrees. A tree may be traversed in several ways. Traversing a tree is accessing its elements in a systematic way.

 Trees have a number of applications in computing. The modules of many programs are linked together in a tree structure. Trees are also used to represent arithmetic expressions, and for sorting and searching. Some computers regard their entire memory as if it were partitioned into a tree structure.

 The essential feature of a tree is that each node is connected to subtrees, which themselves have the structure of trees. In other words, wherever you are in a tree, the structure ‘below’ you is a tree. In this sense a tree is a recursive data structure, and can be manipulated by recursive programs. This is the property of trees which makes them so useful from a computing point of view.

 A number of programming languages require that the type of each data item be declared before the data item is used in a program. A data item may be an integer, an array, or a list, to name just a few examples.

Ex.1. Answer the following questions:

1. Why is it useful to think of a pointer as an arrow?

2. What do you understand by the “null value”?

3. How do we indicate the length of a string?

4. Is it possible to vary the number of elements in an array?

5. What do dynamic structures need in order to implement them successfully?

6. What are the different uses of stacks?

7. What is pushing or stacking and popping?

8. What two applications of queues do you know?

9. What is a list?

10. What is the simplest way of implementing a list?

11. What does a list element consist of?

12. In what cases are lists used?

13. What is a tree?

14. What are trees used for?

15. What is an essential feature of a tree?

Ex.2. Give the main ideas of the text in logical order.

Ex.3. Translate in writing:

 Множество значений или переменных с одним общим именем называются структурированными (составными) типами. Имеется несколько способов построения составных типов, каждый из которых отличается способом обращения к отдельным компонентам и, следовательно, способом обозначения компонент, входящих в данные структурированных типов.

По способу организации и типу компонент выделяют четыре основные разновидности структурированных типов:

· Регулярный тип (массивы)

· Комбинированный тип (записи)

· Файловый тип (файлы)

· Множественный тип (множества)

 Использование структурированных типов данных позволяет решать разнообразные и достаточно сложные задачи.

В задачах, которые мы рассматривали, данные ситуации поступали с клавиатуры, а результаты выводились на экран дисплея. Поэтому ни исходные данные, ни результаты не сохранялись. Всякий раз при выполнении одной и той же программы, особенно во время ее отладки, приходилось заново вводить исходные данные. А если их очень много? Тогда удобно оформить исходные данные и результаты в виде файлов, которые можно сохранить на диске точно так же, как и программы.

 Файл - это область памяти на внешнем носителе, в которой хранится некоторая информация. В языке Паскаль файл представляет собой последовательность элементов одного типа. Мы будем работать только с т.н. файлами последовательного доступа. В таких файлах, чтобы получить доступ к элементу, необходимо последовательно просмотреть все предыдущие.

 Файл последовательного доступа можно сравнить с магнитной лентой, на которой записаны песни. Для того, чтобы найти конкретную песню, надо перемотать песню за песней, до тех пор, пока не будет найдена нужная.

Зачем нужны файлы? Объем информации, которую можно сохранять в файле, очень велик. Он значительно больше, чем объем, который можно хранить в оперативной памяти, например при использовании массивов.

Ex.4 Topics for discussion.
1. The array ROYAL FAMILY has elements as follows:

Elizabeth
Phillip
Charles
Andrew
Anne
Edward
 Name the element with index value 5 and represent it in the
 standard from.

2. The operations known as pushing or stacking, and popping.

3. Different uses of stacks.

4. Two applications of queues.

 UNIT 5

Central Processing Unit
Key vocabulary:
1. Execute

v.
– выполнять
2. Remain

v.
– оставаться

3. Regardless

adv.
– несмотря на
4. Represent

v.
– представлять
5. Fetch

v.
– извлекать,
 вытаскивать, принести

6. Retrieve

v.
– находить, извлекать
7. Determine

v.
– определять, решать

8. Cause

v.
– заставлять,
 вызывать, быть причиной

9. Issue

v.
– вопрос, проблема,
 предмет обсуждения

10. Pipeline architecture

– конвейерная
 архитектура

11. Define

v.
– определять

12. Opcode

n.
– код операции

13. Provide

v.
– обеспечивать,
 снабжать

14. Require

v.
– требовать

15. Request

v.
– предлагать,
 предписывать; запрашивать

16. Bitwise operations

– (по)битовые
 операции

17. Handle

v.
– обрабатывать,
 обращаться

18. Overflow flag

– признак
 переполнения, флаг переполнения
19. Flags register

– флаговый регистр

20. Subsequent

adj. – последующий

21. Facilitate

v.
– облегчать, помогать,
 способствовать

22. Behave

v.
– работать,
 действовать; вести себя, поступать

23. Behavior

n.
– поведение, режим
 работы, состояние, свойства

24. Conditional jump

– условный переход

25. Consider

v.
– рассматривать,
 обдумывать, принимать во внимание

26. According to

prep.
– согласно, в
 соответствии с

27. Program flow

– ход программы,
 блок-схема программы

28. Simultaneously

adv.
– одновременно
 A central processing unit (CPU) is an electronic circuit that can execute computer programs. The term itself have been in use in the computer industry at least since the early 1960s.The form, design and implementation of CPUs have changed dramatically since the earliest examples, but their fundamental operation has remained much the same.
 The fundamental operation of most CPUs, regardless of the physical form they take, is to execute a sequence of stored instructions called a program. The program is represented by a series of numbers that are kept in some kind of computer memory. There are four steps that nearly all CPUs use in their operation: fetch, decode, execute, and writeback.

 The first step, fetch, involves retrieving an instruction (which is represented by a number or sequence of numbers) from program memory. The location in program memory is determined by a program counter (PC), which stores a number that identifies the current position in the program. After an instruction is fetched, the PC is incremented by the length of the instruction word in terms of memory units. Often the instruction to be fetched must be retrieved from relatively slow memory, causing the CPU to stall while waiting for the instruction to be returned. This issue is largely addressed in modern processors by caches and pipeline architectures.
 The instruction that the CPU fetches from memory is used to determine what the CPU is to do. In the decode step, the instruction is broken up into parts that have significance to other portions of the CPU. The way in which the numerical instruction value is interpreted is defined by the CPU's instruction set architecture. Often, one group of numbers in the instruction, called the opcode, indicates which operation to perform. The remaining parts of the number usually provide information required for that instruction, such as operands for an addition operation. Such operands may be given as a constant value (called an immediate value), or as a place to locate a value: a register or a memory address, as determined by some addressing mode.

 After the fetch and decode steps, the execute step is performed. During this step, various portions of the CPU are connected so they can perform the desired operation. If, for instance, an addition operation was requested, an arithmetic logic unit (ALU) will be connected to a set of inputs and a set of outputs. The inputs provide the numbers to be added, and the outputs will contain the final sum. The ALU contains the circuitry to perform simple arithmetic and logical operations on the inputs (like addition and bitwise operations). If the addition operation produces a result too large for the CPU to handle, an arithmetic overflow flag in a flags register may also be set.

 The final step, writeback, simply "writes back" the results of the execute step to some form of memory. Very often the results are written to some internal CPU register for quick access by subsequent instructions. In other cases results may be written to slower, but cheaper and larger, main memory. Some types of instructions manipulate the program counter rather than directly produce result data. These are generally called "jumps" and facilitate behavior like loops, conditional program execution (through the use of a conditional jump), and functions in programs. Many instructions will also change the state of digits in a "flags" register. These flags can be used to influence how a program behaves, since they often indicate the outcome of various operations. For example, one type of "compare" instruction considers two values and sets a number in the flags register according to which one is greater. This flag could then be used by a later jump instruction to determine program flow.

 After the execution of the instruction and writeback of the resulting data, the entire process repeats, with the next instruction cycle normally fetching the next-in-sequence instruction because of the incremented value in the program counter. If the completed instruction was a jump, the program counter will be modified to contain the address of the instruction that was jumped to, and program execution continues normally. In more complex CPUs than the one described here, multiple instructions can be fetched, decoded, and executed simultaneously.

Ex. 1. Answer the following questions:
1. How did the CPU of early computers differ from modern ones?
2. What is the fundamental operation of most CPUs?
3. What are the four steps in this operation?
4. How can you find an instruction in program memory?
5. What is one of the ways of interpretation of the numerical instruction value?
6. What can ALU do?

7. Where can the results of execution be written?
8. What are the three possible processes after the execution of the instruction and writeback of the resulting data?
Ex. 2. Give the main ideas of the text in logical order.

Ex. 3. Translate in writing:

 Каждый микропроцессор включает в себя миллионы транзисторов, но и самих процессоров для работы компьютера требуется немало. Помимо центрального процессора, который во всем мире принято обозначать аббревиатурой CPU, схожими микросхемами оборудована практически каждая компьютерная «железка».

 Центральный процессор управляет всеми ресурсами компьютера. Но уследить за всем, что происходит в компьютере, процессор не в состоянии. И тогда на помощь ему приходят специализированные микропроцессоры – чипы по обработке, например, обычной или трехмерной графики, 3D звука, компрессии и т.п. Их в компьютере много, и они уже не являются процессорами, а просто чипами.

 С другой стороны и сам процессор – это целая система важных устройств. На любом процессорном кристалле находятся: собственно процессор, состоящий из множества транзисторов; сопроцессор – специальный блок для операций с плавающей точкой; кэш- память первого уровня и кэш-память второго уровня. Все эти устройства размещаются на кристалле площадью не более 4-6 квадратных сантиметров.
Ex. 4. Topics for discussion.

1. History of CPU.

2. Clock rate.

3. Parallel computing.
 UNIT 6
Input Devices
Key vocabulary

1. Dedicated keys

– специальные
 клавиши
2. Numeric keypad

– цифровая
 клавишная панель
3. Via

adv.
– через, посредством

4. Infrared signal

– инфракрасный
 сигнал

5. Shape

n.
– форма
6. Interact

v.
– взаимодействовать,
 влиять друг на друга
7. Launch

v.
– запускать
8. Convert

v.
– преобразовывать,
 превращать

9. Flatbed

adj.
– планшетного типа,
 плоский

10. Rotating

adj.
– вращающийся,
 поворотный
11. Separate

adj.
– отдельный, особый,
 специальный

12. Appropriate

adj.
– соответствующий,
 подходящий, адекватный
Interacting with Your Computer

 Input devices are the pieces of hardware which allow us to enter information into the computer.

The Keyboard

 A standard PC keyboard has various groups of keys.

 Cursor control keys include arrow keys that move the insertion point up, down, right, and left, and keys such as End, Home, Page Up and Page Down, which are used in word processing to move around a long document.

 Alphanumeric keys represent letters and numbers, as arranged on a typewriter.

 Function keys appear at the top of the keyboard and can be programmed to do special tasks.

 Dedicated keys are used to issue commands or to produce alternative characters, e.g. the Ctrl key or the Alt key.

 A numeric keypad appears to the right of the main keyboard. The Num Lock key is used to switch from numbers to editing keys.
The Mouse

 A mouse is a hand-held device that lets you move a pointer (or cursor) and select items on the screen. It has one or more buttons to communicate to the PC. A scroll wheel lets you move through your documents or web pages. The pointer looks like an I-bar, an arrow or a pointing hand.

 An optical mouse has an optical sensor instead of a ball underneath.

 A cordless (wireless) mouse has no cable; it sends data via infrared signals or radio waves.

 The mouse is widely used in graphics and design. When you want to move an image, you position the pointer on the object you want to move, press the mouse button, and drag the image to a new location on the screen. Similarly, the mouse is used to change the shape of a graphic object. For example, if you want to convert a square into a rectangle, you grab one corner of the square and stretch it into a rectangle.

Voice Input

 Today you can also interact with your computer by the voice with a voice-recognition system that converts voice into texts, so you can dictate text directly onto your word processor or email program. You can also control your PC with voice commands, this means you can launch programs, open, save or print files. Some systems let you search the Web or chat using your voice instead of the keyboard.

Scanners

 Input devices such as scanners and cameras allow you to capture and copy images into a computer.

A scanner ‘sees’ images and converts the printed text or pictures into electronic codes that can be understood by the computer. With a flatbed color scanner, the paper with the image is placed face down on a glass screen, as with a photocopier. Beneath the glass are the lighting and measurement devices. Once the scanner is activated, it reads the image as a series of dots and then generates the digitized image that is sent to the computer and stored as a file.

The scanner operates by using three rotating lamps, each of which has a different colored filter: red, green, and blue. The resulting three separate images are combined into one by appropriate software.

 Barcode scanners read barcodes on the products sold in shops and send the price to the computer in the cash register. Barcodes consist of a series of black and white stripes used to give products a unique identification number.
Digital Cameras

 A digital camera doesn’t use film. Photos are stored as digital data (bits made up of 1s and 0s), usually on a tiny storage device known as a flash memory card. You can connect the camera or memory card to a PC and then alter the images using a program like Adobe Photoshop, or you can view the images on a TV set.

Digital Video Cameras and Webcams

 A camcorder, or digital video camera, records moving pictures and converts them into digital data that can be stored and edited by a computer with special video editing software. Digital video cameras are used by home users to create their own movies, or by professionals in computer art and video conferencing.

 They are also used to send live video images via the Internet. In this case they are called Web cameras, or webcams.

 Webcams (short for Web cameras) let you send and receive live video pictures through the Internet. They’re primarily used for video conferences – video calls- but they can be used to record photos and video onto your hard disk.

Ex.1. Answer the following questions:

1. What groups of keys has a standard PC keyboard got?

2. What does a mouse consist of?

3. Where is the mouse widely used?

4. What are the benefits of speech recognition system?

5. Which device is used to input text and graphic images from a printed page?

6. How does a scanner send information to the computer?

7. What is a barcode? How can it be read?

8. How do digital cameras differ from conventional cameras?

9. Which device would you use to take digital video?

Ex. 2. Give the main idea of the text in logical order.

Ex. 3. Translate in writing:

История создания компьютерной мышки.

 9 декабря 1968 года первопроходец компьютерных техно-логий Дуглас Энгельбарт (Douglas Engelbart) показал участникам конференции Fall Joint Computer Conference (FJCC) новый способ взаимодействия с компьютером. В своей демонстрации он использовал периферийное устройство, которое можно считать прародителем всех современных компьютерных мышей.

 Энгельбарт показал, как с помощью мыши можно вырезать, копировать и вставлять фрагменты текста. Кроме того, была показана возможность совместного доступа к документам по сети. Мышь была частью компьютерной системы NLS. Интересно, что корпус первой мыши был сделан из дерева, а сама она имела всего одну кнопку.

 Название «мышь» манипулятор получил в Стенфордском Исследовательском Институте из-за схожести сигнального провода с хвостом одноименного грызуна (у ранних моделях он выходил из задней части устройства). Первым компьютером, в комплект которого включалась мышь, был миникомпьютер XEROX 8010 Star Information System, представленный в 1981 г. Мышь имела три кнопки и стоила 40 долларов США.

 За прошедшие годы мыши сильно эволюционировали - появились лазерные, беспроводные модели с большим набором программируемых кнопок. Ежегодно потребителям предлагается огромное количество самых разнообразных мышей - от миниатюрных моделей для использования с ноутбуками до устройств, ориентированных на энтузиастов компьютерных игр. Одна только компания Logitech, которая выпустила свою первую серийную мышь в 1985 году, за прошедшие годы успела отправить потребителям миллиард компьютерных мышек.

 (BBC News)

Ex. 4. Topics for discussion.

1. Identify the different keys on a keyboard and explain their functions

2. Choose one of the input devices. Describe its functions and features. Try to guess which device your partner is describing.

3. Advantages and disadvantages of digital cameras compared to conventional cameras.

4. The future of speech recognition systems.

 UNIT 7
Output Devices
Key vocabulary
1. Instant feedback

– моментальная
 обратная связь
2. Liquid

adj.
– жидкий
3. Cathode ray tube

– электронно-лучевая
 трубка
4. Incorporate

v.
– включать,
 содержать в себе, объединять
5. Consume

v.
– потреблять,
 расходовать

6. Consumption

n.
– расход,
 потребление
7. Color resolution

– цветовая
 разрешающая способность

8. Axis (pl. Axes)

n.
– ось, осевая линия

9. Color depth

– глубина,
 насыщенность света

10. Quantity

n.
– количество, число,
 величина

11. Glow

v.
– светить, светиться

12. Beam

n.
– луч, испускаемое
 излучение

13. Discharge

n.
– разряд
14. Angle

n.
– угол
15. Emit

v.
– испускать,
 выделять, выбрасывать

16. Electroluminescence

n.
– электролюми-

 несценция, электроосвещение

17. Ink-jet printer

– струйный принтер
18. Range

n.
– область, диапазон,
 интервал

19. Scalable font

– масштабируемый
 шрифт

20. Image setter

n.
– устройство фото-

 вывода, система

 формирования
 изображений

Displays
 Displays, often called monitors or screens, are the most-used output devices on a computer. They provide instant feedback by showing you text and graphic images as you work or play.

 Most desktop displays use Liquid Crystal Display (LCD) or Cathode Ray Tube (CRT) technology, while nearly all portable computing devices, such as laptops, incorporate LSDs. Because of their slimmer design and lower energy consumption, LCD monitors (also called flat panels or flat screen displays) are replacing CRTs.
Basic Features

 Resolution refers to the number of dots of color, known as pixels (picture elements), contained in a display. It is expressed by identifying the number of pixels on the horizontal or vertical axes.

 Color depth refers to the number of colors a monitor can display. This depends on the number of bits used to describe the color of a single pixel. Monitors with a 32-bit depth are used in digital video, animation and video games to get certain effects.

Display Technologies

 An LCD is made of two glass plates with a liquid crystal material between them. The crystals block the light in different quantities to create the image.

 A CRT monitor is similar to a traditional TV set. It contains millions of tiny red, green and blue phosphor dots that glow when struck by an electron beam, that travels across the screen and creates a visible image.

 In a plasma screen, images are created by a plasma discharge, which contains noble (non-harmful) gases. Plasma TV allow for larger screens and wide viewing angles, making them ideal for movies.

 Organic Light-Emitting Diodes (OLEDs) are thin-film LED displays that don’t require a backlight to function. The material emits light when stimulated by an electrical current, which is known as electroluminescence. They consume less energy, produce brighter colors and are flexible – i.e. they can be bent and rolled up when they’re not being used.

Printers
 A printer is a device that prints your texts or graphics on paper.

To begin with, you should take into account that printers vary in cost, speed, print quality, and other factors such as noise or printing method.

 Dot-matrix printers use pins to print the dots required to shape a character. They can print text and graphics; however, they produce relatively low resolution output – 72 to 180 dots per inch (dpi). They are slower than laser printers, but much cheaper.

 An ink-jet (also called bubble-jet) printer generates an image by spraying tiny, precise drops of ink onto the paper. The resolution ranges from 300 to 1,200 dpi, suitable for small quantities or home use.

 A standard ink-jet has a three-color cartridge, plus a back cartridge. Professional ink-jets have five-color cartridges, plus black; some can print in wide format, ranging from 60 cm up to 5 meters (e.g. for printing advertising graphics).

 Some ink-jet based printers can perform more than one task. They are so called multi-function printers because they can work as a scanner, a fax and a photocopier as well as a printer. Some units accept memory cards and print photos directly from a camera.

 Laser printers produce output at great speed and with a very high resolution of 1,200-2,400 dpi. They scan an image with a laser beam and transfer it to paper with a special ink powder called toner. They are constantly being improved. In terms of speed and image quality, laser printers are preferred by experts for various reasons; for instance, they have a wider range of scalable fonts than inkjets, can emulate different language systems, and can produce high-quality graphics.

 Thermal transfer printers are used to produce color images by transferring a wax-based ink onto the paper. They are popular for printing bar codes, labels and medium-resolution graphics.

 Imagesetters produce very high-resolution output (up to 3,540 dpi) on paper or on the actual film for making the printing plates. In addition, they are extremely fast. Imagesetters are most often used in desktop publishing (DTP).

Ex. 1. Answer the questions:
1. What do CRT and LCD stand for?

2. How are images created in a plasma screen?

3. What are the three advantages of OLED displays?

4. What substance produces light and color when hit with by electrons in CRT monitors?

5. What technology is used in LCDs?

6. What is the importance of “pixel resolution”?

7. What type of computers use LCD displays?

8. Is there a printer that operates by spraying ink droplets onto paper?

9. Is an imagesetter the fastest or the slowest output device?

Ex. 2. Give the main idea of the text in logical order
 Ex.3. Translate in writing:
Рождение жидких кристаллов

 Производство жидкокристаллических мониторов (Liquid Crystal Displays - LCD) началось в 70-х годах прошлого столетия. Основой этой технологии стали жидкие кристаллы-вещества сами по себе необычные и с необычной историей их открытия. В 1888 году австрийский ботаник Рейнитцер синтезировал на основе холестерина новое кристаллическое вещество, которое при нагревании до 145 градусов плавилось, превращалось в мутную жидкость, а при 179 градусах становилось прозрачным. Во время охлаждения вещество обретало синеватую окраску и становилось мутным вплоть до 145, когда вещество вновь кристаллизовалось. Такое состояние назвали жидкокристаллическим (ЖК).

 Как нередко случается в фундаментальной науке, открытие стало преждевременным, и о загадочных субстанциях забыли до середины прошлого века, когда вдруг оказалось, что не будь в природе ЖК-состояния, нынешняя жизнь на Земле была бы другой! Дальнейшие исследования показали, что ЖК откликаются не только на изменение температуры, но и на воздействие магнитных и электрических полей. Вот так необычно началось шествие ЖК-мониторов по нашей планете.
Ex. 4. Topics for discussion.

1. Flat screens.
2. Pros and cons of a printer you use.
3. Describe the characteristics of the printer you would like to use. Give reasons.
4. Printer languages.
 UNIT 8

Disks and Drives
Key vocabulary

1. Storage

n.
– память,
 запоминающее устройство
2. Spin

v.
– вращаться,
 крутиться
3. External

adj.
– внешний
4. Internal

adj.
– внутренний
5. Portable

adj.
– портативный,
 независимый, переносимый
6. Sealed case

– пломбированный
 корпус
7. Back up

v.
– создавать
 резервную копию
8. Spare

adj.
– запасной,
 резервный
9. Density

n.
– плотность (записи),
 концентрация, интенсивность
10. Affect

v.
– оказывать
 воздействие, влияние; затрагивать
11. Damage

n., v.
– повреждение,
 поломка, разрушение;

 повреждать; испортить
12. Laser beam

– лазерный луч
13. Capacity

n.
– информационная
 емкость, вместимость, объем,

 пропускная способность
14. Archive

n., v.
– архив; помещать в
 архив, создавать архив
15. Interactive content

– интерактивный
 контент (содержание)
16. Erase

v.
– стирать, разрушать
17. Hence

adv.
– отсюда,
 следовательно
18. High-definition

– высокая четкость,
 разрешение
19. Removable

adj.
– съемный, сменный,
 монтируемый
20. Non-volatile

adj.
– энергонезависимый,
 неразрушающийся
21. Retain

v.
– сохранять,
 удерживать
22. Network switch

– сетевое
 переключение
23. Drive partition

– разбиение жесткого
 диска на логические

 разделы
24. Range

n., v.
– диапазон, область,
 интервал;

 варьировать, изменяться
25. Interchangeable

adj.
– взаимозаменяемый,
 равнозначный,

 сменный
26. Boot

n., v.
– загрузка; загрузить
27. Power consumption

– потребляемая
 мощность
Magnetic Core
 Magnetic devices store data magnetically. A disk drive spins the disk at high speed and reads its data or writes new data onto it.

· A floppy disk drive uses 3.5 inch diskettes which can only hold 1.44 MB of data; it’s often called A: drive and is relatively slow

· Most PC’s have only one internal hard disk, usually called C: drive, which can hold several gigabytes of data. It is used to keep the operating system, the programs and the user’s files easily available for use.

 When you format a disk, or prepare it for use, its surface is divided into concentric circles, called tracks. Each track is further divided into a number of sectors. The computer remembers where information is stored by noting the track and sector numbers in a directory.

· A portable hard drive is an external unit with the drive mechanism and the media all in one sealed case. You can use it to make backup, a spare copy of your files, or to transport data between computers.
Optical storage

 Optical disks can store data at much higher densities than magnetic disks. They are therefore ideal for multimedia applications where images, animation and sound occupy a lot of disk space. Furthermore, optical disks are not affected by magnetic fields, meaning that they are secure and stable, and can be transported through airport metal detectors without damaging the data. However, optical drives are slower than hard drives.

CDs and DVDs

 At first sight, a DVD is similar to a CD. Both disks are 120 mm in diameter and 1.22 mm thick. They also both use a laser beam to read data. However, they are very different in internal structure and data capacity.

 CDs come in three different formats:

· CD-ROMs (read-only memory) are read only units, meaning you cannot change the data stored on them (for example, a dictionary or a game)

· CD-R (recordable) disks are write-once devices which let you duplicate music CDs and other data CDs.

· CD-RW (rewriteable) disks enable you to write onto them many times, just like a hard disk.

 DVDs also come in several formats:

· DVD-ROMs are used in DVD computer devices. They allow for data archiving as well as interactive content (for example, an encyclopedia or a movie)

· DVD-R or DVD+R disks can only be recorded on once

· DVD- RW or DVD+RW disks can be erased and reused many times. They are used to back up data files and to record audio and video
HD-DVD and Blu-ray Disks

 These two competing formats are expected to replace current DVD as the standard for watching movies at home. On one side are Toshiba, Microsoft and the DVD Forum, who support the High Definition-DVD (HD-DVD). Sony, Panasonic, Samsung, JVC and many movie studios are behind the Blu-ray format.

 A Blu-ray disc has a capacity of 25GB (single layer), 50GB (dual layer) and 100GB (four layer). Unlike DVDs, which use a red laser to read and write data. Blue-ray uses a blue-violet laser, hence its name. Blu-ray can record and play back high-definition television and digital audio, as well as computer data.
Removable Flash Memory

 Flash memory is a type of non-volatile memory that can be electronically erased and reprogrammed. Its name was invented by Toshiba to express how much faster it could be erased- ‘in a flash’, which means ‘very quickly’.

 Unlike RAM, which is volatile, flash memory retains the information stored in the chip when the power is turned off. This makes it ideal for use in digital cameras, laptops, network switches, video game cards, mobile phones and portable multimedia players. In addition, it offers fast read access times (although not as fast as RAM), with transfer rates of 12MB per second. Unlike ROM chips, flash memory chips are rewritable, so you can update programs via software.

 Flash memory is used in several ways:

· Many PCs have their BIOS (basic input/output system) stored on a flash memory chip so it can be updated if necessary

· Modems use flash memory because it allows the manufacturer to support new protocols

· USB flash drives are used to save and transfer files between computers
 New U3 smart drives allow users to store both applications and data. They have two drive partitions and can carry applications that run on the host computer without requiring information.

Flash memory cards are used to store images on cameras, to back up data on PDAs, to transfer games in video consoles, to record voice and music on MP3 players or to store movies on MP4 players. They are as small as a stamp, and their capacity can range from 8 MB to several gigabytes. Their only limitation is that flash cards are often not interchangeable.

 The future of hard drives may be hybrid hard drives. Hybrid hard drives combine a magnetic hard disk and flash memory into the device. This allows computers to boot, or start more quickly, and also reduces power consumption.
Ex. 1. Answer the questions:

1. What is the size of a floppy disk?

2. How many internal disks do most PCs have?

3. What happens when you format a disk?

4. What is the portable hard disk drive used for?

5. Are erasable optical drives more expensive than magnetic drives?

6. What formats do CDs and DVDs come in?

7. Which system is ideal for watching movies?

8. What are the main characteristics of the Blue-ray disks?

9. What is the difference between volatile and non-volatile memory?

10. What does the name “flash memory” express?

11. What is the future of hard drives?
Ex. 2. Give the main idea of the text in logical order.
Ex. 3. Translate in writing:
Компания Samsung Electronics объявила о старте серийного производства чипов компьютерной памяти нового типа — с изменением фазы (PRAM). Они сохраняют информацию путём расплавления и затвердевания крошечных кристаллов.

Идея PRAM была впервые предложена физиками ещё в 1960 годах. Позже различные компании и научные группы проводили с фазовой памятью опыты. Но только теперь технология добралась до конвейера.
Новая микросхема обладает ёмкостью в 512 мегабит. PRAM производит стирание ячеек почти в десять раз быстрее, чем современные образцы флеш-памяти, а темп перезаписи информации превышает показатель флешек в семь раз.
Ячейки PRAM основаны на кусочках полупроводника микроскопических размеров. При записи информации они очень быстро переходят из кристаллической фазы в аморфную и обратно. Смена состояния достигается при помощи электрического импульса.

Фазы сильно различаются по сопротивлению и могут быть интерпретированы как нули и единицы. Само пребывание в той или иной фазе энергии не требует. Быстродействие PRAM зависит лишь от того, сколько времени требуется для расплавления и последующей заморозки кристалла.
К примеру, в одном из недавних экспериментов, проведённом Манфредом Вуттигом (Manfred Wuttig) из Берлинского технологического университета, учёные испытывали ячейки PRAM диаметром всего в 20 нанометров. В этих клетках переход между состояниями совершался всего за 16 наносекунд – быстрее любой существующий на сегодняшний день технологии. Применение PRAM в мобильных устройствах за счёт меньшего энергопотребления такой памяти способно увеличить время работы аккумуляторов на 20%.

Ex. 4. Topics for discussion.

1. Blue-ray versus HD-DVD.
2. Flash-based gadgets.
3. Choosing storage devices.
 UNIT 9
Operating System
Key vocabulary

1. Application

n. – приложение,

 прикладная программа,

 применение, использование
2. Hand-held computer

 – «наладонники»

3. Video game consoles

 – игровые видео
 приставки
4. Embedded operating system – встроенная
 операционная система
5. Kernel

 n. – ядро операционной
 системы
6. Application programming interface (API) – интерфейс

 прикладного программирования
7. System calls

 – обращение к

 операционной системе
8. Batch

 n. – пакет, пакетный

 режим
 Batch processing

 – пакетная обработка
 Batch mode

 – режим

 использования командного файла
9. Graphical user-interface
 – графический

 пользовательский интерфейс
10. Multitasking

 n. – многозадачность
11. Protected mode

 – защищенный режим
12. Supervisor mode
 – режим

 администрирования
13. Context switch

 – контекстный
 коммутатор, переключение

 в зависимости от контекста
14. Paging

 n. – подкачка страниц
15. Interrupt

 n.
 – прерывание
 (прекращение выполнения

 текущей программы для
 выполнения служебной)

 An operating system (commonly abbreviated to either OS or O/S) is an interface between hardware and user. An OS is responsible for the management and coordination of activities and the sharing of the resources of the computer. The operating system acts as a host for computing applications run on the machine. As a host, one of the purposes of an operating system is to handle the details of the operation of the hardware. This relieves application programs from having to manage these details and makes it easier to write applications. Almost all computers (including handheld computers, desktop computers, supercomputers, video game consoles) as well as some robots, domestic appliances (dishwashers, washing machines), and portable media players use an operating system of some type. Some of the oldest models may however use an embedded operating system that may be contained on a compact disk or other data storage device.

 The operating system also acts as an interface between an application and the hardware. The user interacts with the hardware from “the other side”. The operating system is a set of services which simplifies the development of applications. Executing a program involves the creation of a process by the operating system. The kernel creates a process by assigning memory and other resources, establishing a priority for the process (in multi-tasking systems), loading program code into memory, and executing the program. The program then interacts with the user and/or other devices and performs its intended function.

 Operating systems offer a number of services to application programs and users. Applications access these services through application programming interfaces or system calls. By invoking these interfaces, the application can request a service from the operating system, pass parameters, and receive the results of the application. Users may also interact with the operating system with some kind of software user interface.

 For hand-held and desktop computers, the user interface is generally considered part of the operating system. On large multi-user systems the user interface is generally implemented as an application program that runs outside the operating system.

 Not all the computers require operating systems. Computers made to perform moderate number of simple tasks do not need to be controlled by the operating system, as they have all the needed mechanisms of communicating with an outer world. For example, a small keyboard and an LCD display is enough for a microwave oven to interface with the user.

 The use of operating systems on more complex computational systems is a way to lesser complexity and greater efficiency. All desktop computers are usually equipped with operating systems. The most well-known operating systems are the Windows family and Macintosh operating systems. Special-purpose computer systems use their own unique operating systems.

History
 Proprietary operating systems were made to sell the company’s hardware. Without system software (compilers and operating systems), a hardware developer had greater difficulty launching a computer. The availability of operating systems was not tied to a single hardware supplier. The invention of operating systems could easily start producing hardware on which buyers could use standard software. Through the 1950s, many major features were pioneered in the field of operating systems. The development of the IBM System/360 produced a family of mainframe computers for which a single operating system OS/360 was planned.

 IBM’s current mainframe operating systems are distant descendants of this original system and applications written for the OS/360 can still be run on modern machines.

 In the late 1960s through the late 1970s, several hardware capabilities evolved that allowed similar or ported software to run on more than one system. The operating systems (KRONOS, NOS) developed during the 1970s, supported simultaneous batch and timesharing use.

 The enormous investment in software made since 1960s caused most of the original computer manufacturers to continue to develop compatible operating systems along with the hardware.

Functions

 An operating system has three main functions:

· Manage the computer’s resources, such as the central processing unit, memory, disk drives, and printers.

· Establish a user interface.

· Execute and provide services for applications software.

 It should be taken into account, that much of the work of an operating system is hidden from the user. For example, managing the computer’s resources is done without the user being aware of the details.

Operating system must be able to do two things: manage hardware and software of the computer and provide common interfaces for applications to work with hardware devices. The first task appears, because various applications tend to use the CPU, memory, input/output system and other common hardware at the same time, and operating system must be a judge in solving different conflicts. Performing the second task by providing a special application programming interface is useful when portability is mentioned, for software written without straight dependences on hardware part of a computer system is of a higher level of confidence that it will run on another system.

 There are four basic types of operating systems:

· Real-time operating systems are used to control machinery, scientific instruments and industrial systems. A very important part of real-time operating systems is managing the resources of the computer in such a way, that a particular operation is performed similar every other time it occurs, i.e. without dependency on some resources availability.

· Single-user single-task operating systems are used when only one application is needed to be performed at one time. Pocket-sized computers are equipped with such OSes.

· Single-user multi-task operating systems are mostly used on desktop and laptop computer systems. Windows 95, 98, Me and the MacOs are examples of operating systems that will let a single user have several programs in operation at the same time.

· Multi-user operating systems are broadly used in computer networks, allowing many different users to take advantage of the computer’s resources simultaneously. The requirements of the users must be controlled for balance, and one user’s problems should not affect the entire network. Unix and VMS are examples of multi-user OSes.

 Single-user OSes with network support and multi-user systems are not the same things. Single-user OS calls the administrator “user”, while other use hardware sharing mechanisms.

Features
Interrupts

 Interrupts are central to operating systems, since they provide an efficient way for the operating system to interact with and react to its environment. Interrupt-based programming is directly supported by most CPUs. Interrupts provide a computer with a way of automatically running specific code in response to events. Even very basic computers support hardware interrupts, and allow the programmer to specify code which may be run when that event takes place.

 When an interrupt is received, the computer’s hardware automatically suspends whatever program is currently running, saves its status, and runs computer code previously associated with the interrupt. In modern operating systems, interrupts are handled by the operating system’s kernel. Interrupts may come from either the computer’s hardware or from the running program.

Protected Mode and Supervisor Mode

 Modern CPUs support something called dual mode operation. CPUs with this capability use two modes: protected mode and supervisor mode, which allow certain CPU functions to be controlled and affected only by the operating system kernel. However, the term is used more generally in operating system theory to refer to all modes which limit the capabilities of programs running in that mode, providing things like virtual memory addressing and limiting access to hardware in a manner determined by a program running in supervisor mode. However, when the operating system passes control to another program, it can place the CPU into protected mode.

 In protected mode, programs may have access to a more limited set of the CPUs instructions. In this way the operating system can maintain exclusive control over things like access to hardware and memory.
Memory Management

 A multiprogramming operating system kernel is responsible for managing all system memory which is currently in use by programs. This ensures that a program does not interfere with memory already used by another program. Since programs time share, each program must have independent access to memory.

 Cooperative memory management, used by many early operating systems assumes that all programs make voluntary use of the kernel’s memory manager, and do not accept their allocated memory. With cooperative memory management it takes only one misbehaved program to crash the system.

 Memory protection enables the kernel to limit a process access to the computer’s memory.

 Various methods of memory protection exist, including memory segmentation and paging.

Multitasking

 Multitasking refers to the running of multiple independent computer programs on the same computer, giving the appearance that it is performing the tasks at the same time. Since most computers can do at most one or two things at one time, this is generally done via time sharing, which means that each program uses a share of the computer’s time to execute.

 An operating system kernel contains a piece of software called a scheduler which determines how much time each program will spend executing, and in which order execution control should be passed to programs. Control is passed to a process by the kernel, which allows the program access to the CPU and memory. At a later time control is returned to the kernel through some mechanism, so that another program may be allowed to use the CPU. This, so-called passing of control between the kernel and applications, is called a context switch.

Networking

 Currently most operating systems support a variety of networking protocols, hardware, and applications for using them. This means that computers running dissimilar operating systems can participate in a common network for sharing resources such as computing, files, printers, and scanners using either wired or wireless connections. Networks can essentially allow a computer’s operating system to access the resources of a remote computer to support the same functions as it could if those resources were connected directly to the local computer. This includes everything from simple communication to using network file systems or even sharing another computer’s graphics or sound hardware. Many operating systems support one or more vendor-specific or open networking protocols.

Security

 A computer being secure depends on a number of technologies working properly. A modern operating system provides access to a number of resources, which are available to software running on the system, and to external devices like networks via the kernel.

 The operating system must be capable of distinguishing between requests which should be allowed to be processed, and others which should not be processed. While some systems may simply distinguish between “privileged” and “non-privileged”, systems commonly have a form of requester identity, such as user name. To establish identity there may be a process of authentication. Often a username must be quoted, and each username may have a password. Some other methods of authentication, such as magnetic cards or biometric data, might be used instead.

 There are two main types of security - internal and external security. Internal security, or security from an already running program, is only possible if all possibly harmful requests must be carried out through interrupts to the operating system kernel. Internal security is especially relevant for multi-user systems; it allows each user of the system to have private files that the other users cannot tamper with or read.

 External security involves a request from outside the computer, such as a login at a connected console or some kind of network connection. External requests are often passed through device drivers to the operating system’s kernel, where they can be passed onto applications, or carried out directly.

Examples of Operating Systems

Microsoft Windows

 Microsoft Windows is a family of proprietary operating systems that originated as an add-on to the older MS-DOS operating system for the IBM PC. The most widely used version of the Microsoft Windows family is Windows XP, released in October 2001. Modern versions are based on the newer Windows NT kernel that was originally intended for OS/2.

 The first Windows series were not true multi-user operating systems. In addition, they implemented only partial memory protection. They were accordingly widely criticized for the lack of security.

 The Windows NT series of operating systems, by contrast, are true multi-user, and implement absolute memory protection.

 In November 2006, after more than five years of development work, Microsoft released Windows Vista, a major new operating system version of Microsoft Windows family which contains a large number of new features and architectural changes. Chief amongst these are a new user interface and visual style called Windows Aero, a number of new security features, and a few new multimedia applications.

Unix/Linux

 Ken Thompson used B to write Unix. Later B was replaced by C, and Unix developed into a large complex family of inter-related operating systems which have been influential in every modern operating system. The Unix-like family is a diverse group of operating systems, with several major sub-categories including Linux. The term “Unix-like” is commonly used to refer to the large set of operating systems, which resembles original Unix. Unix-like systems run on a wide variety of machine architectures. They are used heavily for servers in business, as well as workstations in academic and engineering environments.

 In 1994 an undergraduate called Linus Torvalds set out to write his own “kernel”. When he had written a basic kernel, he released the source code on the Internet.

 Programmers in different parts of the world began using Linux. When they found out that it didn’t do the things they wanted it to do – they fixed it. All the improvements were sent to Linus, who rolled them into the kernel. As a result Linux began to grow.

There is a special term for this model of software development - it is called Open Source. Anyone can have the source code, as it is free, and can contribute to it.

 Linux is now the most widely–ported operating system. It became quite popular nowadays.

Conclusion

 Operating systems evidently form our computer life, for they are our computers’ faces, arms and legs. Nowadays the absence of an operating system on the computer could mean only two things: either it is a microwave or it is still in the stone era. Since modern business is too strongly tied with computers, the latter must provide the easiest, fastest and most convenient way of communication, document handling, accounting, and so on. The continuing growth of the Internet and the proliferation of computers that aren’t standard desktop or laptop machines means that operating systems will change to keep pace, but the core management and interface functions will continue, even as they evolve.

Ex. 1. Answer the following questions:

1. What is an operating system?

2. What is the role of an operating system?

 3. What is the relationship between an operating system and a
 user?

 4. Does operating system offer a number of services to
 application programs?

 5. Can you name the most popular operating systems
 nowadays?

 6. Why was an operating system invented?

 7. What is regarded to be the first operating system?

 8. What are the first operating systems and their main
 peculiarities?

 9. What are the main features of operating systems?

 10. Can you characterize Microsoft Windows family of
 operating systems?

 11. Can you name the main features of Unix-like operating
 systems?

 12. What are the functions of an operating system?

 13. What are the basic types of operating systems?

Ex. 2. Give the main ideas of the text in logical order.

Ex. 3. Translate in writing:

Что такое операционная система?

 Операционная система – это комплекс взаимосвязанных системных программ, назначение которого – помогать взаимодействию пользователя с компьютером и выполнению всех других программ. Операционная система выступает как связующее звено между аппаратурой компьютера и выполняемыми программами, с одной стороны, а также пользователем с другой стороны.
 Операционную систему можно назвать программным продолжением устройства управления компьютера.
 Операционная система скрывает от пользователя сложные ненужные подробности взаимодействия с аппаратурой. В результате этого люди освобождаются от очень трудоемкой работы по организации взаимодействия с аппаратурой компьютера.

 Для управления внешними устройствами компьютера используются специальные системные программы-драйверы. Драйверы стандартных устройств образуют в совокупности базовую систему ввода-вывода (BIOS – Basic Input Output System), которая обычно заносится в постоянное ЗУ (запоминающее устройство) компьютера.

 В различных моделях компьютера используют операционные системы с разной архитектурой и возможностями. Для их работы требуются разные ресурсы.

 Операционная система обычно хранится во внешней памяти компьютера – на диске. При включении компьютера она считывается с дисковой памяти и размещается в ОЗУ. Этот процесс называется загрузкой операционной системы (downloading).

 Анализ и исполнение команд пользователя, включая загрузку готовых программ из файлов в оперативную память и их запуск, осуществляет командный процессор операционной системы.

 В функции операционной системы входит:

1. Осуществление диалога с пользователем;

2. Ввод-вывод и управление данными;
3. Планирование и организация процесса обработки программ;
4. Распределение ресурсов (оперативной памяти и КЭШа, процессора, внешних устройств);
5. Запуск программ на выполнение;
6. Всевозможные вспомогательные операции обслуживания;

7. Передача информации между различными внутренними устройствами;
8. Программная поддержка работы периферийных устройств (дисплея, клавиатуры, дисковых накопителей, принтера, и др.)
Exercise 4. Topics for discussion.

1. The idea of an operating system and the development of this concept.

2. The ideal operating system. Its features and capabilities.

3. Windows or Linux (Unix-like operating systems). Advantages and disadvantages.

4. Operating systems of the future. What are they?

 UNIT 10

High-level languages
Key vocabulary:

1. Convenient

adj.
– удобный, подходящий,
 пригодный
2. Means

n.
– средство, pl. средства
3. Portable

adj.
– переносной, мобильный
4. Conciseness

n.
– краткость
5. Because of

adv.
– благодаря, из-за
6. Objective

n.
– цель
7. Explicitly

adv.
– точно, ясно, подробно;
 явно
8. Efficiency

n.
– эффективность,
 продуктивность
9. Meaning

n.
– значение, смысл
10. Permit

v.
– позволять, разрешать,
 допускать
11. Measure

v.
– измерять, мерить
12. Identifier

n.
– идентификатор
13. Result in

v.
– приводить к
14. Scope

n.
– область (действия)
15. Resolve

v.
– решать, разрешать
16. Goal

n.
– цель, задача
17. Implementation
n.
– реализация, внедрение,
 осуществление
18. Clarity

n.
– ясность, чистота
What is a High Level Language?

 A high level language is a problem oriented programming language, whereas a low level language is machine oriented. In other words, a high level language is a convenient and simple means of describing the information structures and sequences of actions required to perform a particular task.

 A high level language is independent of the architecture of the computer which supports it. This has two major advantages. Firstly, the person writing the programs does not have to know anything about the computer on which the program will be run. Secondly, programs are portable, the same program can (in theory) be run on different types of computers. However, this feature of machine independence is not always achieved in practice.

 In most cases, programs in high level language are shorter than equivalent programs in low level languages. However, conciseness can be carried too far, to the point where programs become impossible to understand. More important features of a high level language are its ability to reflect clearly the structure of programs written on it, and its reliability.

 High level languages may be broadly classified as a general-purpose or special-purpose. General-purpose languages are intended to be equally well suited to business, scientific, engineering or systems software tasks. The commonest general-purpose languages are Algol 68 and PL/1. The language Ada also falls into this category. Because of their broad capabilities, these languages are large, and relatively difficult to use.

 The commonest categories of special-purpose languages are commercial, scientific and educational. In the commercial field, Cobol still reigns supreme, while Fortran is still the most widely used scientific language. In the computer educational field, Basic is widely used in schools, with Logo and Prolog gaining popularity. Pascal is the most popular language at universities. Pascal is a powerful general-purpose language in its own right.

 Another way of classifying high level languages is as procedural and declarative languages. Procedural languages state how a task is to be performed, often breaking programs into procedures, each of which specifies how a particular operation is to be performed. All the early high level languages are procedural, with Algol, Pascal and Ada as typical examples.

 Declarative programming languages describe the data structures and relationships between data relevant to a particular task, and specify what the objective of the task is. The process by which the task is to be carried out is not stated explicitly in the program. This process is determined by the language translation system. Prolog is an example of a declarative programming language.

 The defining characteristics of a high level language are problem-orientation and machine independence.

 The first objective of a high level language is to provide a convenient means of expressing the solution of a problem. There are two common ways of doing this - mathematics, and natural languages, such as English. Most high level languages borrow, without much modification, concepts and symbols from mathematics. The problem with natural languages is that in their full richness and complexity, they are quite impossible to use to instruct a computer. Nevertheless, high level languages use words from natural languages and allow these words and mathematical symbols to be combined according to various rules. These rules create the structure of programs written in the language. The result, in a good high level language, is a clear structure, not too different from our customary ways of thinking and expressing ourselves.

 The discussion leads to the second objective of high level languages - simplicity. Simplicity is achieved by a small set of basic operations, a few clear rules for combining these operations, and, above all, the avoidance of special cases.

 The third objective of a high level language is efficiency. Programs in the language must be able to be translated into machine code fairly quickly, and the resulting machine code must be run efficiently. This objective almost always conflicts with the first two. Most high level languages reflect a compromise between these objectives.

 The final objective is reliability of programs. A good high level language should enable programs to be written which are clear to read without additional comments. Regrettably, some high level languages ignore this objective altogether.

Features of High Level Languages
 The character set used by a language is the set of all characters which may be used in programs written in the language. Almost all languages use letters and decimal digits.
 Most high level languages use reserved words. These are words which have a specific meaning in programs, and may not be used by the programmer for any other purpose. For example, in Pascal, reserved words include read, if… then .. else and write. Some languages permit abbreviations of reserved words it uses. The size and complexity of a language can be measured by the number of reserved words it uses. For example, Occam has 28 reserved words, while Ada uses more than sixty.

 Perhaps the most important feature of a high level language is the way in which programs in it are structured. The structure of a program is specified by a set of rules, called rules of syntax. Different languages have different ways of expressing these rules. In some, the rules are written in concise English. Others use syntax diagrams, while others (notably Algol) use a notation originally called Backus-Naur form, now known as BNF.

 Much attention has been devoted, in the development and use of high level languages, to the way in which programs are split up into blocks or modules, each module doing a specific task. In some languages, notably Fortran, these blocks are called subroutines, in others such as Algol and Pascal, these blocks are called procedures or functions. Because of the careful structuring of programs into blocks which they permit, Algol, Pascal and similar languages are called block-structured languages.

 Procedures, functions, or subroutines are activated via calls from the other parts of the program. For example, if a program contains a function to calculate the square root of a given number, this function is called every time a square root is required in the rest of the program. Most languages permit a procedure or function to call itself, a feature known as recursion. This is an extremely powerful feature for handling such data structures as lists, stacks and trees, and for such tasks as analyzing the structure of arithmetic expressions.

 An important aspect of high level languages is the way in which they handle the data items and data structures used in a program. Broadly speaking, data items fall into two categories: variables, which can change their value during the running of a program, and constants, which keep the same value. In most programming languages, variables are given names, or identifiers. In some languages, such as Fortran and Basic, constants are referred to by their values, while in others, such as Algol and Pascal, constants are also given identifiers.

 Some programming languages require that all variables be declared before they are used. Generally, variables are declared by listing them at the start of the procedure or subroutine in which they are to be used. An attempt to use a variable which has not been declared results in an error.

 This gives rise to the idea of the scope of a variable. The scope of a variable is the part of a program in which it may be used. Variables which are declared for use in one procedure only are called local variables. Their scope is limited to that procedure. Variables which are declared for use in the whole program are called global variables. Their scope is the whole program. The intention of providing each variable with a scope is to enable a program to be broken up into ‘watertight’ blocks, or modules. Each block uses only the information it requires. This simplifies the task of designing, writing and testing programs, and limits the effects of errors.

 Almost all high level languages include the notion of data types. In Basic language the standard data types are numeric and character strings. These types can be incorporated into arrays, which are tables of items of the same type. In most high level languages, numbers can be integers or real numbers (generally stored in floating point from). PL/1 even permits the number of significant figures in a number to be declared. Another common standard data type is Boolean, with the range of values ‘true’ and ‘false’. Data types can contain single documents, or be structures such as arrays, stacks, lists, trees, etc.
The Pascal Programming Language

 The earliest computers were programmed in machine code and assembly. This type of programming is tedious and error-prone, as well as extremely difficult to understand and modify. Programming is a time-consuming and expensive process. High level languages were developed to resolve this problem. High level languages provide a set of instructions that read like English, but can be translated by a program called a compiler into machine code. Pascal is one such language.

 Nicklaus Wirth completed development of the original Pascal programming language in 1970. He based it upon the block structured style of the Algol programming language. There were two original goals for Pascal. According to the Pascal Standard (ISO 7185), these goals were to make available a language suitable for teaching programming as a systematic discipline based on fundamental concepts clearly and naturally reflected by the language, and to define a language whose implementations could be both reliable and efficient on then-available computers.

 Pascal went far beyond its original design goals, with commercial use of the language often exceeding academic interest. Pascal provides rich data structures, including both the enumerated and record data types, and defined with a pleasing and powerful clarity. It provided an orthogonal and recursive approach to data structures, with arrays of arrays, arrays of records, records containing arrays, files of records, files of arrays, files of records containing arrays of records, and so on. Pascal’s popularity exploded in the 1970’s, as it was used in writing both system and application software. For this reason, the International Standards committee decided that a formal standard was needed to promote the stability of the Pascal language. By the end of the 1970’s, more than 80 computer systems had Pascal implementations in use.

In 1978, Richard Gleaves and Mark Allen, working on campus in San Diego, used UCSD Pascal to develop the 6502 interpreter which became the basis for Apple Pascal. By the 1980’s, Pascal was used by most universities to teach programming, while still invading the commercial markets. It became so popular that even FORTRAN began to change, taking advantage of Pascal’s innovations.

 Due to the strong popularity of the Pascal language in system and application software development, and in response to the many cited drawbacks of the original Pascal implementation, an Extended Pascal evolved to address the needs of commercial development.

In addition to Extended Pascal, in 1986, Apple Computer released the first Object Pascal implementation, a version of its Apple Pascal that supported object-oriented programming.

 In 1993, the Pascal Standards Committee published an Object-Oriented Extensions to Pascal technical report which was based upon Apple’s Object Pascal implementation.

 Pascal is still used today, both as a powerful educational tool for programming, as well as a viable language for industrial, commercial, scientific, shareware and freeware applications. The Pascal Language is available on a number of different platforms, both commercially and through open source.

Ex.1. Answer the following questions:
1. What is a high-level language?

2. What is the relationship of the high-level language to the computer which supports it?

3. What are the major advantages of this relationship?

4. What are the ways of classifying high-level languages?

5. In what way do declarative languages differ from procedural languages?

6. What are the objectives of high-level languages?

7. What can be found in character list of any language?

8. How are the rules of syntax expressed?

9. What is the powerful feature for dealing with data structures in many languages?

10. In what way do high-level languages handle the data items used in a program?

11. What is the intention of providing each variable with a scope?

12. What notion do almost all high-level languages include?

13. What can data types contain?

14. When was the original Pascal programming language completed?

15. What was it based on?

16. What were the two original goals for Pascal?

17. What does Pascal provide?

18. What is Pascal used for?

Ex. 2. Give the main ideas of the text in logical order.
Ex. 3. Translate in writing:

Языки программирования принято делить на две основные группы, по мере их близости или удаления от языка машинных команд.

Языки низкого уровня – например, ассемблера - мало похожи на привычный человеку язык. Они обычно лаконичны и оперируют не буквами или словами, а цифрами. Чем ближе к машинному уровню языка, тем меньше и конкретнее задачи, которые ставят перед каждой командой. Большие, громоздкие команды на таких языках пишут редко, т.к. это – сложная и кропотливая работа. Зато если программа будет написана на языке низкого уровня, работать она будет быстро, занимая маленький объем и допуская минимум ошибок.

Языки высокого уровня – например, известные всем Basic, Pascal, C – гораздо в большей степени ориентированы на человека. Команды этих языков – понятные человеку английские слова. Компьютеру для выполнения любой из них придется проделать не одну операцию, как в ассемблере, а несколько.

Понятно, что повседневным орудием программистов сегодня являются именно языки высокого уровня. И практически все программные пакеты, которыми мы пользуемся сегодня, созданы с помощью именно этих или подобных им языков. Поэтому и обучение программированию начинают с таких языков как Basic или Pascal - они просты и лучше других иллюстрируют принципы программирования.
Ex. 4.Topics for discussion:
1. The main characteristics of high-level languages.

2. The four objectives of high-level languages.

3. The advantages and the disadvantages of high-level languages.

4. Pascal as a general-purpose programming language.
 UNIT 11
Assembler

Key vocabulary

1. As opposed to

 – в отличие
2. Error-prone

adj. – подверженный
 ошибкам
3. Tedium

n. – скука,
 утомительное дело
4. Subroutine

n. – подпрограмма
5. Scheduling

n. – планирование
6. Exploit

v. – использовать
7. Sequence

 n.-последовательность
8. Facilitate

v. – облегчить,
 способствовать
9. Distinction

n. – различие
10. Stand-alone

adj. – отдельный,
 независимый

11. Alter

v. – менять,
 варьировать
12. Vendor

n.
 – продавец
13. Initial

adj.
– изначальный
14. Locate

v.
 – определять
 местонахождение,

 находить
15. Similar

adj. – похожий,
 аналогичный
16. Bitwise

adv. – поразрядно
17. Call

v.
– вызвать
 (функцию)

18. Inherit

v. – наследовать

19. Raw

adj. – сырой,
 необработанный
20. Lack

n. – нехватка,
 недостаток
21. Decipher

v. – расшифровать,
 понять
22. Widespread acceptance

 – широкое
 распространение
23. Reliability

n. – надежность
24. Handful

adj. – несколько
25. Take advantage of

 – использовать
26. Take for granted

– считать
 доказанным, не требующим

 доказательств
27. Underlying concepts

– основные
 понятия
28. Appropriate
 adj. – соответствующий, уместный
 An assembly language is a low-level language for programming computers. It implements a symbolic representation of the numeric machine codes and other constants needed to program a particular CPU architecture. This representation is usually defined by the hardware manufacturer, and is based on abbreviations (called mnemonics) that help the programmer remember individual instructions, registers, etc. An assembly language is thus specific to certain physical or virtual computer architecture (as opposed to most high-level languages, which are portable).

 A utility program called an assembler is used to translate assembly language statements into the target computer’s machine code. The assembler performs a more or less isomorphic translation (a one-to-one mapping) from mnemonic statements into machine instructions and data. (This is in contrast with high-level languages, in which a single statement generally results in many machine instructions. A compiler, analogous to an assembler, is used to translate high-level language statements into machine code; an interpreter executes statements directly.)

 Typically a modern assembler creates object code by translating assembly instruction mnemonics into opcodes, and by resolving symbolic names for memory locations and other entities. The use of symbolic references is a key feature of assemblers, saving tedious calculations and manual address updates after program modifications.

 Most sophisticated high-level assemblers provide language abstractions such as:

· Advanced control structures

· High-level procedure/function declarations and invocations

· High-level abstract data types, including structures/records, unions, classes, and sets

· Sophisticated macro processing

· Object-Oriented features such as encapsulation, polymorphism, inheritance, interfaces.
Assembly Language
 A program written in assembly language consists of a series of instructions (mnemonics) that correspond to a stream of executable instructions, when translated by an assembler, that can be loaded into memory and executed.

 For example, an x86/IA-32 processor can execute the following binary instructions as expressed in machine language:

 Binary 10110000 01100001 (Hexadecimal: 0xb0 0x61)

 The equivalent assembly language representation is easier to remember (more mnemonic): Mov al, #061h
This instructions means:

 Move the hexadecimal value 61 (97 decimal) into the processor register named “al”.

 The mnemonic “mov” represents the opcode 1011 which moves the value in the second operand into the register indicated by the first operand. The mnemonic was chosen by the instruction set designer to abbreviate “move”, making it easier for the programmer to remember. A comma-separated list of arguments of parameters follows the opcode; this is a typical assembly language statement.

 Transforming assembly into machine language is accomplished by an assembler, and the reverse by a disassembler. Unlike in high-level languages, there is usually a one-to-one correspondence between simple assembly statements and machine language instructions. However, in some cases, an assembly may provide pseudo instructions which expend into several machine language instructions to provide commonly needed functionality. For example, for a machine that lacks a “branch if greater or equal” instructions, an assembler may provide a pseudo instruction that expands to the machine’s “set if less than” and “branch if zero” (on the result of the set instruction).

 Every computer architecture has its own machine language. On this level, each instruction is simple enough to be executed using a relatively small number of electronic circuits. Computers differ by the number and type of operations they support. For example, a new 64-bit machine would have different circuitry than a 32-bit machine. They may also have different sizes and numbers of registers, and different representations of data types in storage.

 While most general-purpose computers are able to carry out essentially the same functionality, the ways they do so differ; the corresponding assembly languages reflect these differences.

Language Design

Basic Elements
 Instructions (statements) in assembly language are generally very simple, unlike those in high-level languages. Each instruction typically consists of an operation or opcode plus zero or more operands. Most instructions refer to a single executable machine language instruction.

 Some assemblers also support pseudo-instructions, which generate two or more machine instructions.

 Assembly languages, like most other computer languages, allow comments to be added to assembly source code that are ignored by the assembler. Good use of comments is even more important with assembly code than with higher-level languages, as the meaning of a sequence of instructions is harder to decipher from the code itself.

Use of Assembly Language .Historical Perspective
 Historically, a large number of programs have been written entirely in assembly language.

 Operating systems were almost exclusively written in assembly language until the widespread acceptance of C in the 1970s and early 1980s. Many commercial applications were written in assembly language as well, including a large amount of the IBM mainframe software written by large corporations.

 In a more commercial context, the biggest reasons for using assembly language were size (and hence speed), and reliability: the writers of Card box-Plus simply said: “We use assembler because then all the bugs are ours.”

 Typical examples of large assembly language programs from this time are the MS-DOS operating system, the early IBM PC spreadsheet program Lotus 1-2-3, and almost all popular games for the Atari 800 family of home computers.

Current Usage

 There have always been debates over the usefulness and performance of assembly language relative to high-level language, though this gets less attention today. Assembly language has specific niche uses where it is important. The complexity of modern processors makes effective hand-optimization increasingly difficult. This has made raw execution speed a non-issue for most programmers.

 There are really a handful of situations where today’s expert practitioners would choose assembly language. There are some of them:

When interacting directly with the hardware.

When extreme optimization is required, e.g., in an inner loop in a processor-intensive algorithm. Some game programmers are experts at writing code that takes advantage of the capabilities of hardware features in systems enabling to run faster.

 When complete control over the environment is required (for example in extremely high security situations, where nothing could be taken for granted).

 When writing computer viruses, bootloaders, certain device drivers, or other items very close to the hardware or low-level operating system.

 ASM is also still used for writing games and other software for graphics calculators.

 For any given personal computer, mainframe, embedded system, and game console, both past and present, at least one - possibly dozens - of assemblers have been written.

 Some higher level computer languages, such as C and Borland Pascal, support inline assembly where relatively brief sections of assembly code can be embedded into the high level languages code.

 Assembly language is still taught in most Computer Science and Electronic Engineering programs. Although few programmers today regularly work with assembly language as a tool, the underlying concepts remain very important. Such fundamental topics as binary arithmetic, memory allocation, stack processing, character set encoding, interrupt processing, and compiler design would be hard to study in detail without a grasp of how a computer operates at the hardware level. Since a computer’s behavior is fundamentally defined by its instruction set, the logical way to learn such concepts is to study an assembly language. Most modern computers have similar instruction sets. Therefore, studying a single assembly language is sufficient to learn:

· The basic concepts

· To recognize situations where the use of assembly language might be appropriate

· To see how efficient executable code can be created from high-level languages

Ex.1. Answer the following questions:

1. What is the difference between assembly language and high-level language?

2. How does assembler create an object code?

3. What does a program written in assembly language consist of?

4. What is typical of instructions (statements) in assembly language?

5. What were historically the biggest reasons for using ASM?

6. What is ASM used for?

Ex.2. Give the main ideas of the text in logical order.

Ex.3. Translate in writing:

 Первые языки ассемблера были разработаны в 1950-х, и их стали называть языками программирования второго поколения. Они практически отменили необходимость в подверженном ошибкам и неэффективном по времени программировании на языках первого поколения, использовавшихся в первых компьютерах, таким образом освобождая программиста от утомительного запоминания численных кодов и подсчета адресов.

 Когда-то они широко использовались для самого разного программирования. Но в 80-х (в небольших компьютерах – в 90-х) их практически вытеснили языки высокого уровня. Сегодня язык ассемблера используется в основном для прямого управления устройствами, доступа к специальным инструкциям процессора или для решения чувствительных к производительности задач. Часто используется при написании драйверов устройств, встроенных систем низкого уровня и ОС реального времени.

 Многие более сложные ассемблеры предоставляют дополнительные механизмы для облегчения разработки программ, контролирования процесса трансляции и помощи в поиске ошибок. В частности, большинство современных ассемблеров включают в себя механизм для работы с макросами и называются макро-ассемблерами.
Ex.4. Topics for discussion.

1. Key features of assemblers.
2. Use of assembly language.
3. The importance of assembly language.
 UNIT I2
Future Computers
Key vocabulary:

1. Harness

v.
– обуздывать,
 покорять
2. Superposition

n.
– суперпозиция
3. Inherent

adj.
– присущий,
 свойственный, неотъемлемый

4. Conventional

adj.
– обычный,
 привычный, традиционный

5. Entanglement

n.
– (квантовое)
 запутывание

6. Assume

v.
– принимать, брать
 (на себя)

7. Devise

v.
– придумать,
 изобретать, разрабатывать

8. Disturb

v.
– нарушать ход,
 равновесие

9. Incredibly

adv.
– невероятно

10. Time-consuming

adj.
– занимающий много
 времени

11. Confine

v.
– ограничивать

12. Occur

v.
– случаться,
 прoисходить

13. Ultimate goal

– конечная цель

14. Commonplace

n.
– обычная вещь,
 банальность

15. Destination

n.
– место назначения,
 цель

16. Employ

v.
– использовать

17. Rely on

v.
– полагаться,
 надеяться, доверять

18. To some extent

– до некоторой
 степени

19. Intend

v.
– предназначать

20. Frequency sensitive

– чувствительный,
 быстро реагирующий на

 изменение частоты
21. Trapping

n.
– улавливание, захват
Quantum Computers
 Will we ever have the amount of computing power we need or want? If, as Moore's Law states, the number of transistors on a microprocessor continues to double every 18 months, the year 2020 or 2030 will find the circuits on a microprocessor measured on an atomic scale. And the logical next step will be to create quantum computers, which will harness the power of atoms and molecules to perform memory and processing tasks. Quantum computers have the potential to perform certain calculations significantly faster than any silicon-based computer.

 The Turing machine, developed by Alan Turing in the 1930s, is a theoretical device that consists of tape of unlimited length that is divided into little squares. Each square can either hold a symbol (1 or 0) or be left blank. A read-write device reads these symbols and blanks, which gives the machine its instructions to perform a certain program. In a quantum Turing machine, the difference is that the tape exists in a quantum state, as does the read-write head. This means that the symbols on the tape can be either 0 or 1 or a superposition of 0 and 1; in other words the symbols are both 0 and 1 (and all points in between) at the same time. While a normal Turing machine can only perform one calculation at a time, a quantum Turing machine can perform many calculations at once.

 Today's computers, like a Turing machine, work by manipulating bits that exist in one of two states: a 0 or a 1. Quantum computers aren't limited to two states; they encode information as quantum bits, or qubits, which can exist in superposition. Qubits represent atoms, ions, photons or electrons and their respective control devices that are working together to act as computer memory and a processor. Because a quantum computer can contain these multiple states simultaneously, it has the potential to be millions of times more powerful than today's most powerful supercomputers.

 This superposition of qubits is what gives quantum computers their inherent parallelism. This parallelism allows a quantum computer to work on a million computations at once, while your desktop PC works on one. A 30-qubit quantum computer would equal the processing power of a conventional computer that could run at 10 teraflops (trillions of floating-point operations per second). Today's typical desktop computers run at speeds measured in gigaflops (billions of floating-point operations per second).
 Quantum computers also utilize another aspect of quantum mechanics known as entanglement. One problem with the idea of quantum computers is that if you try to look at the subatomic particles, you could bump them, and thereby change their value. If you look at a qubit in superposition to determine its value, the qubit will assume the value of either 0 or 1, but not both (effectively turning your spiffy quantum computer into a mundane digital computer). To make a practical quantum computer, scientists have to devise ways of making measurements indirectly to preserve the system's integrity. Entanglement provides a potential answer. In quantum physics, if you apply an outside force to two atoms, it can cause them to become entangled, and the second atom can take on the properties of the first atom. So if left alone, an atom will spin in all directions. The instant it is disturbed it chooses one spin, or one value; and at the same time, the second entangled atom will choose an opposite spin, or value. This allows scientists to know the value of the qubits without actually looking at them.

 Quantum computers could one day replace silicon chips, just like the transistor once replaced the vacuum tube. But for now, the technology required to develop such a quantum computer is beyond our reach. Most research in quantum computing is still very theoretical.

 The most advanced quantum computers have not gone beyond manipulating more than 16 qubits, meaning that they are a far cry from practical application. However, the potential remains that quantum computers one day could perform, quickly and easily, calculations that are incredibly time-consuming on conventional computers.

Optical Computers
 An optical computer (also called a photonic computer) is a device that uses the photons in visible light or infrared (IR) beams, rather than electric current, to perform digital computations. An electric current flows at only about 10 percent of the speed of light. This limits the rate at which data can be exchanged over long distances, and is one of the factors that led to the evolution of optical fiber. By applying some of the advantages of visible and/or IR networks at the device and component scale, a computer might someday be developed that can perform operations 10 or more times faster than a conventional electronic computer.

 Visible-light and IR beams, unlike electric currents, pass through each other without interacting. Several (or many) laser beams can be shone so their paths intersect, but there is no interference among the beams, even when they are confined essentially to two dimensions. Electric currents must be guided around each other, and this makes three-dimensional wiring necessary. Thus, an optical computer, besides being much faster than an electronic one, might also be smaller.

 Some engineers think optical computing will someday be common, but most agree that transitions will occur in specialized areas one at a time. Some optical integrated circuits have been designed and manufactured. (At least one complete, although rather large, computer has been built using optical circuits.) Three-dimensional, full-motion video can be transmitted along a bundle of fibers by breaking the image into voxels. (A voxel is a unit of graphic information that defines a point in three-dimensional space.) Some optical devices can be controlled by electronic currents, even though the impulses carrying the data are visible light or IR.

 Optical technology has made its most significant inroads in digital communications, where fiber optic data transmission has become commonplace. The ultimate goal is the so-called photonic network, which uses visible and IR energy exclusively between each source and destination. Optical technology is employed in CD-ROM drives and their relatives, laser printers, and most photocopiers and scanners. However, none of these devices are fully optical; all rely to some extent on conventional electronic circuits and components.

 Today's computers use the movement of electrons in-and-out of transistors to do logic. Photonic computing is intended to use photons or light particles, produced by lasers, in place of electrons. Compared to electrons, photons are much faster – light travels about 30 cm, or one foot, in a nanosecond – and have a higher bandwidth.

 Computers work with binary, on or off, states. A completely optical computer requires that one light beam can turn another on and off. This was first achieved with the photonic transistor, invented in 1989 at the Rocky Mountain Research Center. This demonstration eventually created a growing interest in making photonic logic componentry utilizing light interference.

 Light interference is very frequency sensitive. This means that a narrow band of photon frequencies can be used to represent one bit in a binary number. Many of today's electronic computers use 64 or 128 bit-position logic. The visible light spectrum alone could enable 123 billion bit positions.

 Recent research shows promise in temporarily trapping light in crystals. Trapping light is seen as a necessary element in replacing electron storage for computer logic. Recent years have seen the development of new conducting polymers which create transistor-like switches that are smaller, and 1,000 times faster, than silicon transistors.

 Optical switches switch optical wavelengths. Optical switching, while not all-optical, has already become important in networking environments. 100 terabit-per-second data-handling is expected within the decade.
Ex. 1. Answer the questions:

1. What natural phenomena are at the basis of quantum computers?
2. What are the two principles of quantum mechanics that quantum computers use?
3. What makes quantum computers more powerful?
4. What is one of the difficulties in developing quantum computers?
5. What are the advantages of a light beam over electric current?
6. What are the steps in the development of optical computers?
Ex. 2. Translate in writing:

 Для понимания законов квантового мира не следует прямо опираться на повседневный опыт. Обычным образом (в житейском понимании) квантовые частицы ведут себя лишь в том случае, если мы постоянно "подглядываем" за ними, или, говоря более строго, постоянно измеряем, в каком состоянии они находятся. Но стоит нам "отвернуться" (прекратить наблюдение), как квантовые частицы тут же переходят из вполне определенного состояния сразу в несколько различных ипостасей. То есть электрон (или любой другой квантовый объект) частично будет находиться в одной точке, частично в другой, частично в третьей и т. д. Это не означает, что он делится на дольки, как апельсин. Тогда можно было бы надежно изолировать какую-нибудь часть электрона и измерить ее заряд или массу. Но опыт показывает, что после измерения электрон всегда оказывается "целым и невредимым" в одной-единственной точке, несмотря на то, что до этого он успел побывать одновременно почти везде. Такое состояние электрона, когда он находится сразу в нескольких точках пространства, называют суперпозицией квантовых состояний и описывают обычно волновой функцией, введенной в 1926 году немецким физиком Э. Шредингером. Модуль значения волновой функции в любой точке, возведенный в квадрат, определяет вероятность найти частицу в этой точке в данный момент. После измерения положения частицы ее волновая функция как бы стягивается (коллапсирует) в ту точку, где частица была обнаружена, а затем опять начинает расплываться. Свойство квантовых частиц быть одновременно во многих состояниях, называемое квантовым параллелизмом, успешно используется в квантовых вычислениях.
Appendix. The Final Tests.
Test 1.
I. Pascal‘s calculator consisted … a set of toothed wheels.

A. out of B. off C. from. D. of

2. Pascal’s machine still had a few…
A. mistakes B. drawbacks C. blunders D. errors

3. This … could only add and subtract.

A. divice B. devise C. device D. device

4. … many models were used, they could not be produced
 commercially.

A. Due to B. Because C. However D. Although

5. Charles Babbage was professor … mathematics … Cambridge
 University.

A. On/at the B. Of/at C. On/in D. Of/in the
6. Charles Babbage … by mathematical errors.
A. had been annoying B. was annoying C. was annoyed D. had annoyed
7. Those tables could be more … calculated by the machines.
A. approximately B. accurate C. approximate D. accurately

8. Babbage next went to work … an analytical engine.
A. about B. on C. in D. with

9. Babbage did not … his wonderful machine.

A. compel B. complain C. complete D. conduct

10. Lady Ada Augusta Lovelace has been called … programmer.
A. An first B. first C. A first D. the first

11. She figured … that the same punched cards could be reused to

 repeat certain instructions.

A. off B. out C. on D. about

12. The electric machine tabulated these cards … the rate of 50 a

 minute.

A. in B. on C. at D. with

13. Binary notation turned … a great breakthrough.

 A. out to be B. into being C. off be D. being
14. Dr. Atanasoff made an important … the development of

 computers.

 A. conception into B. conception to C. contribution into

 D. contribution to
15. The vacuum tubes functioned … switches.

A. as if B. as C. like D. such as

16. ENIAC … new records … calculating speed.

A. made/in B. set/for C. set/in D. made/for
17. ENIAC had its … .

A. limits however B. frontiers although C. borders however

D. limits although

18. It needed … of electric power.
A. a tiny amount B. a huge number C. an entire number

D. a huge amount

19. Eckert and Manchly were … entrepreneurs … scientists.

A. shrewd/as well as B. shrew/as well like C. shrewd/also like
D. shrew/as well as

20. Kaspersky is a … businessman.

A. obsessive B. restrictive C. successful D. succesfull
21. Computers can be used … other than academic or military

 purposes.

 A. on B. with C. in D. for

22. … fact, a program change … 40 control panels.

A. In/meant rewiring B. On/meaned rewiring C. In/meant to rewire

D. On/meaned to rewire
23. ENIAC’s calculating speed was … some extent against the time

 lost in rewiring.

 A. offset in B. compensation in C. offset to D. compensation for
 24. John von Neumann found the … this problem: the stored

 program.

 A. decision to B. solution of C. decision of D. solution to
25. In 1960s magnetic tapes and disks began … for auxiliary

 storage.

A. using B. to use C. to be using D. to be used
TEST 2

1. Transistors made… build more powerful computers.
A. possible it to B. it possible to C. possible to D. possible

2. Second-generation computers could process data …

A. more rapid B. rapidlyer C. rapidlier D. more rapidly
3. The design of third generation computers was different … that

 of second generation ones.
A. was of B. of C. off D. from

4. Developments in the computer field took …so fast that the

 generations can be hard to tell the difference.
A. off B. of C. up D. on

5. People may disagree … what generation we are in.
A. of B. with C. about D. in
6. Mac is … the IBM AT’s programs.
A. incompatible to B. incompatible with C. incompetent to
D. incompetent with
7. Computers vary … size, processing power and cost.

A. in B. on C. for D. with
8. Minicomputers do not generally … an air –conditioned

 environment.
A. rely on B. relinquish C. require D. request
9. The processing is carried … on a single microprocessor chip.

A. with B. up C. off D. out

10. The great speed is one of their … features.

A. distinguishing B. distinct C. distillatory D. distingue

11. Some processors, … mainframes, have a front panel.
A. since B. particularly C. nevertheless D. eventually

12. This add-on … data on microfilm.
A. produces B. reproduces C. products D. reproducts
13. The operator’s console allows the person … the computer.

A. interacting with B. to interact with C. interact to

D. interact with
14. Overall control rests, however, … the user.

A. with B. on C. to D. off

15. The batteries are sufficient to keep the computer … stand-by

 generators can be started.

A. going/until B. to go/until C. going/untill D. go/untill
16. … power supply unit is essential in all mainframes.

 A. Uninterrupted B. Uninterrupting C. Interrupted D. Interrupting
17. 20 years ago the word “algorithm” was unknown … educated

 people.

A. with most B. with the most C. to the most D. to most
18. There are some other words that … the concept of the

 algorithm.

A. captain B. capsize C. capture D. captivate
19. In programming instructions all vagueness must be … .

A. illustrated B. eliquated C. illuminated D. eliminated

20. A computer program is the statement of an algorithm in some

 … language.

A. well refined B. well defined C. well definite D. well finite

TEST 3

1. The algorithm itself is a mental concept that exists … any

 representation.
A. independent of B. independently on C. independently from

D. independently off
2. Algorithm is unusual … other thins people do.

A. at comparison with B. in comparison to C. with comparison to

D. in comparison with

3. … enough, algorithm comes …the Latin version of the name.

A. Cumbersomely/from B. Cumbersomely/off C. Curiously/off

D. Curiously/from
4. Hindu positional decimal notation gave birth … algebra … an

 independent branch of mathematics.

 A. for/like B. to/like C. for/as D. to/as

5. The name of the textbook’s author became associated with
 computations ….
A. on general B. generally C. in general D. at general

6. The concept of an algorithm is … the fundamental … not only

 in mathematics but in science.

A. nowadays/notion B. nowadays/motion C. nowadays/notion

D. nowadays/motion

7. Experience … computers has shown that the data can …

 virtually anything.
A. of/represent B. in/present C. with/represent D. with/present

8. Algorithmic models are more … to solve decision –making

 problems.

A. versatile B. suitable C. apparent D. prophetic

9. The … of operations depends … the state of affairs at the time.
A. consequence/on B. sequence/of C. sequence/on

D. consequence/of

10. The decision step … the computer to control actions.

A. enables B. makes C. inables D. enables
11. … summary, Turing … machine.

A. As/supposed B. In/proposed C. At/suggested D. On/presupposed

12. To run a program written … this language we should … the

 input.
A. in/provide B. on/supply C. at/perform D. with/handle

13. The problem is … allowing expended memory.

A. circumscribed/with B. circumcised/with C. circumfused/by

D. circumvented/by
14. The computer … the STOP instruction.
A. achieved B. reached C. faced D. encountered
15. The rules … constructing the sentence are complicated, yet we apply them …intuition.

A. enables B. makes C. inables D. enables
16. We use telephone … to find the needed phone number.

 A. directions B. directives C. directors D. directories

17. Two indices correspond … row and column in a matrix.

A. on B. about C. to D. with
18. An array stays the same size, … it has been created.

A. once B. at once C. furthermore D. although

19. The structures introduced in the …of this chapter are dynamic

 data structures.

A. reminder B. remainder C. remains D. remain
TEST 4.

1. A stack is a collection of data items which may only be accessed

 … one end.

 A. on B. at C. with D. in

2. Adding a new item … placing it … top of the stack.

A. involves/on B. revolves/at C. involves/at D. revolves/on
3. … knows how a queue works: newcomers join …the rear.
A. Anyone/at B. Everyone/at C. Someone/in D. Everyone/on

4. … this respect, a list is less restrictive then a stack or queue.
A. at B. with C. on D. in

5. A tree may be traversed … ways.

A. with few B. by some C. in several D. at any

6. Some computers regard their entire memory as if it … into a

 tree structure.
A. is parted B. is partitioned C. were partitioned D. had been parted

7. This is the property of tree which makes them so useful … a

 computing point of view.

A. on B. in C. at D. from

8. A data item may be an integer, an array, or a list, to … just

 …examples.
A. name/a few B. tell/few C. say/a few D. put/a few

9. Internet, a global computer network … millions of users all …

 the word.
A. encompasses/over B. embraces/in C. embraces/over

D. encompasses/in

10. Internet provides businessmen … a reliable … to the expensive

 telecommunications systems.
A. for/variety B. with/alternative C. with/choice D. for/option

11. The user of Internet pays a … .

A. per month a royalty B. per monthly tax C. monthly fee

D. month rent

12. Some … problems still … .

A. security/leave B. safety/survive C. security/remain
D. safety/stay

13. It is possible to get into … of computers along the route and …

 the data.
A. any/intervene B. some/intervene C. some/intercept

D. any/intercept

14. … the fact that there are many strong … programs available
 they are not used.
A. In spite of/encoding B. Despite of/encoding

C. Inspite of/decoding D. In spite/encoding

15. Word processors have improved by leads and bounds since their … about ten years ago.

A. advent B. advance C. adventure D. advice
16. Intelligent user interfaces … fifth generation computers usable

 by more people than … present.
A. aim make/on B. aim to make/at C. aimed at make/at the
D. aim making/in
17. These changes are … to come.
A. ambiguously B. unlike C. unlikely D. explicit
TEST 5.
1. A few days ago I saw an interesting program … television.

 A. in B. on C. at D. on the

2. It is often faster to walk than to go … bus.

A. in B. on C. by D. on the

3. The problem has been getting worse … a long time.
A. during B. for C. since D. at

4. I wanted to … for being late.

A. apologize B. excuse C. sorry D. pardon

5. Someone … a mistake.
A. did B. made C. performed D. carried out
6. I don’t know where Mr. Wilson is. He is not in his office so he

 … in one of the studios.
A. has to be B. must be C. needs to be D. needs being

7. He … it was very important.
A. said B. told C. spoke D. was telling

8. These two countries have begun another round of talks. They
 … them last Monday.

A. have begun B. had began C. where beginning D. began
9. I saw him walking out of the supermarket . …big bags ?
A. Did he carry B. Had he carried C. Was he carrying

D. Had he been carrying

10. The cop arrested him …in the supermarket and brought him to the police station.
A. for stealing B. for steal C. in order to steal D. to steal

11. She … him do the work again.

A. did B. made C. asked D. forced
12. He … English ever since he was a little boy.
A. is learning B. learned C. has been learning D. learns

13. I don’t understand why you insisted … so fast.

A. to drive B. in driving C. drive D. on driving

14. I think we … better change the subject.
A. had B. must C. will D. would

15. He came to see me yesterday as … .
A. usually B. usual C. in usual D. of usual

16. She can speak … phone for hours.

 A. on B. by the C. on the D. by

17. Martin came to the counter, looking … something to buy.

A. at B. for C. through D. after

18. I hope you remember … your mother told you.

 A. that B. of what C. which D. what

19. I’d like … look at my new article.
A. you B. for you C. that you will D. you to

20. Oh, you’ve had an accident. When … ?

A. has it happened? B. did it happen? C. it happened?

D. was it happening?

21. It’s time you … spending all your money on gadgets like that!
A. stop B. stopped C. will stop D. should stop

22. You can speak English and French, … ?
A. can you? B. isn’t it? C. can’t you? D. don’t you?

23. You work in London, … ?

A. don’t you? B. aren’t you? C. isn’t it? D. didn’t you?
24. After the University she … English for a year.

A. has been teaching B. has taught C. taught D. had taught

25. … the way, have you seen Tom lately?
A. By B. On C. In D. Under
TEST 6.

1. I was asked …a speech.
A. making B. to make C. doing D. to do

2. It is … difficult problem.

A. so B. so a C. such D. such a

3. I feel … sleepy, I shall go to bed immediately.
A. so B. such C. such a D. so a

4. He works very … .

A. difficultly B. hard C. hardly D. difficult
5. I did not go shopping this morning as I … do the housework.

A. need to B. should C. had to D. must

6. Don’t … . The patient is much better now.
A. trouble B. worry C. afraid D. bother

7. Teenagers watch TV too … .

A. much B. many C. lot D. huge

8. You’d better wait as … .

A. it is raining B. it rains C. it rained D. there is rain
9. Lions … to guard the Tower of London up to 1781.

A. are used B. have been using C. have used D. were used

10. He was afraid to … me the truth.
A. tell B. say C. speak D. announce

11. There … snow on the roads today.

A. are many B. are some C. is few D. is some

12. George I, who was the King of England … 1714 … 1727, could

 not speak a word of English.
A. since/to B. from/to C. with/to D. from/until

13. Have you got … books on accounting?

A. some B. no C. any D. an amount of

14. I could not buy this book … .

A. nowhere B. anywhere C. somewhere D. wherever
15. This dress looks …small for me.

A. rather B. even C. much D. otherwise

16. When you … to me tomorrow at 5 o’clock, I’ll … “The last

 hero”.
A. come/be watching B. will come/watch C. have come/have watch D. shall come/have been watching

17. I … London next year.

 A. visit B. shall visit C. will visit D. am visiting

18. I’ll … what I can … to help you.
A. notice/make B. watch/do C. look/make D. see/do

19. I hope this bad weather is not going to … all week-end.
A. long B. last C. continue D. go on

20. He telephoned me …booking the theatre tickets.

A. to remember me B. to remind me of C. to remind me about

D. not to forget
21. It is very … to do this job.
A. easy B. easily C. easier D. at ease

22. The lift is … order so we … use the stairs.
A. out of/’ll have to B. out/must C. without/need D. out of/ought to
23. If you … this word … in a dictionary.

A. not know/look for it B. know not/look up it
C. are not knowing/look for it D. don’t know/look it up
 Bibliography:

1. William F. Ailreath, Phillip A. Laplante, Computer Architecture, 2003.

2. Phillip A. Laplante, Dictionary of Computer Science, Engineering and Technology, CRC Press, 2001.

3. Gary D. Knoff, Patric Henry, Architecture of the IBM System, Oxford University Press, 2006.

4. J. Walker, Computer Science, Oxford Polytechnic, England, 1989.

5. Infotech, English for Computer Users, Cambridge, 4th edition.

6. Г.В.Лоскутова, Ю.В.Масленникова, Computer Views and News, Санкт-Петербург, 2004.

7. Т.В.Смирнова, М.В.Юдельсон, English for Computer Science Students, Москва, 2001

8. В.П.Леонтьев, Новейшая энциклопедия персонального компьютера, Москва, 2003.

9. Э.Пройдаков, Л.Теплицкий, Англо-русский толковый словарь по вычислительной технике, Интернету и программированию, Москва, 2004.

10. Mary Sumner, Computers, Concepts and Users, New Jersey, 2nd edition, 1988.
PAGE
3

